43 resultados para Lagrangian submanifold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文将国际上流行的两点张量法及 Lagrange 描写方法统一起来。运用虚功原理及张量变换得到了 Lagrangian 坐标系及 Euler 坐标系中的应力率平衡方程以及与之等价的变分方程;同时推导出塑性大变形三维有限元公式。作为特例又导出二维平面应变及平面应力的有限元公式。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to obtain an overall and systematic understanding of the performance of a two-stage light gas gun (TLGG), a numerical code to simulate the process occurring in a gun shot is advanced based on the quasi-one-dimensional unsteady equations of motion with the real gas effect,;friction and heat transfer taken into account in a characteristic formulation for both driver and propellant gas. Comparisons of projectile velocities and projectile pressures along the barrel with experimental results from JET (Joint European Tons) and with computational data got by the Lagrangian method indicate that this code can provide results with good accuracy over a wide range of gun geometry and loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a mathematical model of dynamic fracture in porous ductile materials under intense dynamic general loading is developed. The mathematical model includes the influence of inertial effects and material rate sensitivity, as well as the contribution of surface energy of a void and material work-hardening. In addition, the condition of the void compaction is considered as well. The threshold stresses for the void growth and compaction are obtained. A simple criterion for ductile fracture which is associated with material distention and plastic deformation is adopted. As an application of the theoretical model, the processes of two-dimensional spallation in LY12 aluminum alloy are successfully simulated by means of two-dimensional finite-difference Lagrangian code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Point-particle based direct numerical simulation (PPDNS) has been a productive research tool for studying both single-particle and particle-pair statistics of inertial particles suspended in a turbulent carrier flow. Here we focus on its use in addressing particle-pair statistics relevant to the quantification of turbulent collision rate of inertial particles. PPDNS is particularly useful as the interaction of particles with small-scale (dissipative) turbulent motion of the carrier flow is mostly relevant. Furthermore, since the particle size may be much smaller than the Kolmogorov length of the background fluid turbulence, a large number of particles are needed to accumulate meaningful pair statistics. Starting from the relative simple Lagrangian tracking of so-called ghost particles, PPDNS has significantly advanced our theoretical understanding of the kinematic formulation of the turbulent geometric collision kernel by providing essential data on dynamic collision kernel, radial relative velocity, and radial distribution function. A recent extension of PPDNS is a hybrid direct numerical simulation (HDNS) approach in which the effect of local hydrodynamic interactions of particles is considered, allowing quantitative assessment of the enhancement of collision efficiency by fluid turbulence. Limitations and open issues in PPDNS and HDNS are discussed. Finally, on-going studies of turbulent collision of inertial particles using large-eddy simulations and particle- resolved simulations are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光滑粒子动力学(SPH)作为一种拉格朗日型无网格粒子方法,已经成功地应用于包括含多相流动界面以及移动边界的可压缩和不可压缩流体运动的研究中.通过对Poiseuille流动的深入研究,探索了SPH方法中粒子分布对计算精度的影响,揭示了一种因为粒子不规则分布而导致的数值不稳定现象.研究显示,这种数值不稳定性起源于SPH方法粒子近似过程中的不连续性.使用了一种新的粒子近似格式以确保SPH方法中粒子近似的连续性.计算结果表明,这种新的粒子近似格式对于规则和不规则的粒子分布都能得到稳定精度的结果.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

建立了考虑颗粒碰撞的颗粒冲蚀计算模型,该数学模型包括:在Eulerian坐标系下求解连续相流场;在Lagrangian坐标系下运用离散颗粒硬球模型求解颗粒碰撞;应用半实验关联式求解颗粒冲蚀速率。对水力加砂压裂施工中节流器内液-固两相流的固体颗粒运动和冲蚀特性进行了数值模拟。计算结果表明,固体颗粒密集于节流器入口到出口的一段狭长区域内,冲蚀速率随流体速度呈指数性变化。颗粒直径越大,冲蚀速率也越大。节流器内冲蚀最严重的位置发生在距离节流器出口上边缘10mm以内的局部区域。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semi-implicit algorithms are popularly used to deal with the gravitational term in numerical models. In this paper, we adopt the method of characteristics to compute the solutions for gravity waves on a sphere directly using a semi-Lagrangian advection scheme instead of the semi-implicit method in a shallow water model, to avoid expensive matrix inversions. Adoption of the semi-Lagrangian scheme renders the numerical model always stable for any Courant number, and which saves CPU time. To illustrate the efficiency of the characteristic constrained interpolation profile (CIP) method, some numerical results are shown for idealized test cases on a sphere in the Yin-Yang grid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

耗散粒子动力学(dissipative particle dynamics,DPD)作为一种介观尺度拉格朗日型粒子方法,已经成功地应用于微纳米流动和生化科技的研究中. 复杂固体壁面的处理和壁面边界条件的实施一直是DPD方法发展及应用的一个障碍. 提出了处理复杂固体壁面的一种新的方法. 复杂固体区域通过冻结随机分布并且达到平衡状态的DPD粒子代表;所冻结的DPD粒子位于临近流动区域的一个截距内;在靠近固体壁面的流动区域中设置流动反弹层,当流动DPD粒子进入此流动层后反弹回流动区域. 应用这种固体壁面处理方法.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New measurement by CELSIUS-WASA Collaboration on the pp →pnπ+ reaction reveals clear evidence for the presence of the Roper resonance N∗(1440) which has been ignored in previous theoretical calculations. In this article, based on an effective Lagrangian approach and available knowledge on the Roper resonance, we investigate the role of the Roper resonance for the pp→pnπ+ reaction. It is found that the contribution from the Roper resonance N∗(1440) becomes significant for kinetic energy above 1.1 GeV, consistent with the new experimental observation. The t -channel σ-meson exchange is dominant for the production of the Roper resonance.