107 resultados para LOWER ATMOSPHERE
Resumo:
The doped Eu3+ ions can be partly reduced to Eu2+ in a series of MO-B2O3: Eu (M=Ba, Sr, Ca) glasses synthesized in air atmosphere, but not in the 12CaO-7Al(2)O(3): Eu glass. The different redox-behavior of Eu ions in these two glass systems is attributed to the different host optical basicity. It is found that a lower valence state of Eu2+ is more favorable in acidic glasses, which have lower optical basicities. A notion of the critical value of optical basicity is introduced empirically, which can be used as a guide for the selection of glass composition suitable to incorporate Eu2+ for luminescence. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A V:YAG single crystal was grown by the temperature gradient technique (TGT) with graphite-heating elements. The as-grown crystal has different colorations of light green and yellow brown in different parts. Distribution of vanadium in three samples with different colorations was determined by inductively coupled plasma-mass spectrometry. From the absorption spectrum of the yellow-brown part with peaks at 370, 820 and 1320nm, we can deduce that the reducing atmosphere of carbon diffused from the heating elements can increase the concentration of tetrahedral V3+ ions and induce F color centers. All three samples exhibited light-green color after annealing in vacuum or H-2 atmospheres. In the vacuum annealing process, the V3+ ions in tetrahedral positions were enhanced through two methods: one method is the exchanging of octahedral V3+ and tetrahedral Al3+ ions in neighboring sites under thermal excitation, the other is that F color centers were thoroughly eliminated and the escaped free electrons could be captured by V ions with higher valance states to further improve the concentration of tetrahedral V3+ ions. Besides the two mechanisms, the H-2 annealing process greatly improved the V-tetra(3+) ions through the reduction effect of H-2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
本文研究了在镀膜过程中真空室内水蒸气的含量对HfO2薄膜物理性能的影响。用电子束蒸发和光电极值监控的方法在BK7基底上制备HfO2薄膜。利用残余气体分析仪在线监测了真空室内的残余气氛组成。分别用Lambda 900光谱仪、X射线衍射方法、表面热透镜技术和1064nm的激光器测试了薄膜的光学性能、微结构、吸收和激光损伤阈值。实验发现,附加冷阱装置有助于我们有效控制镀膜过程中的水汽含量,且在水蒸气含量较少的真空室内镀制的薄膜具有较高的折射率,较小的晶粒尺寸,较低的弱吸收值和较高的损伤阈值。
Resumo:
We investigate the influence of vacuum organic contaminations on laser-induced damage threshold (LIDT) of optical coatings. Anti-reflective (AR) coatings at 1064 nm made by Ta2O5/SiO2 are deposited by the ion beam sputtering method. The LIDTs of AR coatings are measured in vacuum and in atmosphere, respectively. It is exhibited that contaminations in vacuum are easily to be absorbed onto optical surface because of lower pressure, and they become origins of damage, resulting in the decrease of LIDT from 24.5 J/cm(2) in air to 15.7 J/cm(2) in vacuum. The LIDT of coatings in vacuum has is slightly changed compared with the value in atmosphere after the organic contaminations are wiped off. These results indicate that organic contaminations are the main reason of the LIDT decrease in vacuum. Additionally, damage morphologies have distinct changes from vacuum to atmosphere because of the differences between the residual stress and thermal decomposability of filmy materials.
Resumo:
Hot pressing (HP) at higher sintering temperature has been a traditional and prevalent technique for the fabrication of alpha-SiAlON. In order to prepare translucent SiAlON more easily, LiF was used as a non-oxide sintering additive to lower the sintering temperature to <= 1650 degrees C. As a result, all of the samples possessed a good hardness and fracture toughness. At the same time, the lower temperature sintered samples showed a higher optical transmittance in the range of 2.5-5.5 mu m wavelength (0.5 mm in thickness). The maximum infrared transmission reached 68% at a wavelength of 3.3 mu m. The present work shows that the sintering process has a strong effect on microstructure and property of alpha-SiAlON. To be exact, a lower sintering temperature and longer holding time can produce some fully-developed microstrcture, which is beneficial for the optical transmittance. (C) 2008 The Ceramic Society of Japan. All rights reserved.