21 resultados para KYOTO PROTOCOL
Resumo:
Natl Univ Defen Technol, China & Nanyang Technol Univ, NUDT
Resumo:
Label free electrochemiluminescence (ECL) DNA detection based on catalytic guanine and adenine bases oxidation using tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] modified glassy carbon (GC) electrode was demonstrated in this work. The modified GC electrode was prepared by casting carbon nanotubes (CNT)/Nafion/Ru(bpy)(3)(2+) composite film on the electrode surface. ECL signals of doublestranded DNA and their thermally denatured counterparts can be distinctly discriminated using cyclic voltammetry (CV) with a low concentration (3.04 x 10(-8) mol/L for Salmon Testes-DNA). Most importantly, sensitive single-base mismatch detection of p53 gene sequence segment was realized with 3.93 x 10(-10) mol/L employing CV stimulation (ECL signal of C/A mismatched DNA oligonucleotides was 1.5-fold higher than that of fully base-paired DNA oligonucleotides). Label free, high sensitivity and simplicity for single-base mismatch discrimination were the main advantages of the present ECL technique for DNA detection over the traditional DNA sensors.
Resumo:
A new set-up was constructed for capillary isoelectric focusing (CIEF) involving a sampling capillary as a bypass fixed to the separation capillary. Sample solutions were subjected to a previously established pH gradient from the sample capillary. Besides performing conventional CIEF, the separation of ampholytic compounds with isoelectric points (p/s) beyond the pH gradient was carried out on this system. This method was termed as pH gradient driven electrophoresis (PGDE) and the basic mathematical expressions were derived to express the dynamic fundamentals. Proteins such as lysozyme, cytochrome C, and pepsin with p/s higher than 10 or below 3 were separated in a pH gradient provided by Pharmalyte (pH 3-10). Finally, this protocol convincingly exhibited its potential in the separation of a solution of chicken egg white.