33 resultados para Iris Marion Young
Resumo:
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Resumo:
Numerous observations in clinical and preclinical studies indicate that the developing brain is particular sensitive to lead (Pb)'s pernicious effects. However, the effect of gestation-only Pb exposure on cognitive functions at maturation has not been studied. We investigated the potential effects of three levels of Pb exposure (low, middle, and high Pb: 0.03%, 0.09%, and 0.27% of lead acetate-containing diets) at the gestational period on the spatial memory of young adult offspring by Morris water maze spatial learning and fixed location/visible platform tasks. Our results revealed that three levels of Pb exposure significantly impaired memory retrieval in male offspring, but only female offspring at low levels of Pb exposure showed impairment of memory retrieval. These impairments were not due to the gross disturbances in motor performance and in vision because these animals performed the fixed location/visible platform task as well as controls, indicating that the specific aspects of spatial learning/memory were impaired. These results suggest that exposure to Pb during the gestational period is sufficient to cause long-term learning/memory deficits in young adult offspring. (C) 2003 Elsevier Inc. All rights reserved.
Prenatal stress modifies hippocampal synaptic plasticity and spatial learning in young rat offspring
Resumo:
Clinical studies demonstrate that prenatal stress causes cognitive deficits and increases vulnerability to affective disorders in children and adolescents. The underlying mechanisms are not yet fully understood. Here, we reported that prenatal stress (10
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
Dopamine (DA) D-1 receptor compounds were examined in monkeys for effects on the working memory functions of the prefrontal cortex and on the fine motor abilities of the primary motor cortex. The D-1 antagonist, SCH23390, the partial D-1 agonist, SKF38393, and the full D-1 agonist, dihydrexidine, were characterized in young control monkeys, and in aged monkeys with naturally occurring catecholamine depletion. In addition, SKF38393 was tested in young monkeys experimentally depleted of catecholamines with chronic reserpine treatment. Injections of SCH23390 significantly impaired the memory performance of young control monkeys, but did not impair aged monkeys with presumed catecholamine depletion. Conversely, the partial agonist, SKF38393, improved the depleted monkeys (aged or reserpine-treated) but did not improve young control animals. The full agonist, dihydrexidine, did improve memory performance in young control monkeys, as well as in a subset of aged monkeys. Consistent with D, receptor mechanisms, agonist-induced improvements were blocked by SCH23390. Drug effects on memory performance occurred independently of effects on fine motor performance. These results underscore the importance of DA D-1 mechanisms in cognitive function, and provide functional evidence of DA system degeneration in aged monkeys. Finally, high doses of D-1 agonists impaired memory performance in aged monkeys, suggesting that excessive D-1 stimulation may be deleterious to cognitive function.
Resumo:
Our previous studies demonstrated that huperzine A, a reversible and selective acetylcholinesterase inhibitor, exerts beneficial effects on memory deficits in various rodent models of amnesia. To extend the antiamnesic action of huperzine A to nonhuman primates, huperzine A was evaluated for its ability to reverse the deficits in spatial memory produced by scopolamine in young adult monkeys or those that are naturally occurring in aged monkeys using a delayed-response task. Scopolamine, a muscarinic receptor antagonist, dose dependently impaired performance with the highest dose (0.03 mg/kg, i.m.) producing a significant reduction in choice accuracy in young adult monkeys. The delayed performance changed from an average of 26.8/30 trials correct on saline control to an average of 20.2/30 trials correct after scopolamine administration. Huperzine A (0.01-0.1 mg/kg, i.m.) significantly reversed deficits induced by scopolamine in young adult monkeys on a delayed-response task; performance after an optimal dose (0.1 mg/kg) averaged 25.0/30 correct. In four aged monkeys, huperzine A (0.001-0.01 mg/kg, i.m.) significantly increased choice accuracy from 20.5/30 on saline control to 25.2/30 at the optimal dose (0.001 mg/kg for two monkeys and 0.01 mg/kg for the other two monkeys). The beneficial effects of huperzine A on delayed-response performance were long lasting; monkeys remained improved for about 24 h after a single injection of huperzine A. This study extended the findings that huperzine A improves the mnemonic performance requiring working memory in monkeys, and suggests that huperzine A may be a promising agent for clinical therapy of cognitive impairments in patients with Alzheimer's disease.
Resumo:
Previous study and analysis of cytochrome b suggested that polyploidization event in the genus Tor occurred about 10 Mya ago. In order to understand evolutionary fates of Sox gene in the early stage of genome duplication at the nucleotide level, PCR surveys for Sox genes in three closely related cyprinid fishes T douronensis (2n = 100), T qiaojiensis (2n = ?), T sinensis (2n = 100) and their relative T brevifilis (2n = 50) were performed. Totally, 52 distinct Sox genes were obtained in these four species, representing SoxB, SoxC, and SoxE group. As expected, isoforms of some Sox genes correspond with the ploidy of species, such as two copies of Sox9a exist in tetraploid species. Analysis indicated that duplicated Sox gene pairs caused by polyploidization evolved independently of each other within polyploid species. Results of substitution rate showed nearly equal rate of nonsynonymous substitution of duplicated Sox orthologs among different polyploid species and their diploid relative orthologs, suggesting at the early stage of genome duplicated Sox orthologs are under similar selective constraints in different polyploidy species and their diploid relative at the amino acid level. All PCR fragments of Sox genes obtained in this study are not accompanied by obvious increase in mutations and pseudogene formation which means that they are under strong purifying selection, suggesting that they are functional at the DNA level. Cenealogical analysis revealed that T qiaojiensis was tetraploid, and T douronensis, T qiaojiensis as well as T sinensis had an allotetraploid ancestor. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.
Resumo:
In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured: normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of C-12(6+) ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.
Resumo:
Porphyra yezoensis Ueda is an important marine aquaculture crop with single-layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold-preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse-amplitude-modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10 degrees C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%-40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20 degrees C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze-thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short-term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze-thaw cycle. Therefore, the frozen nets should be used as soon as time permits.