19 resultados para Internal Process-Level Performance


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural and performance inhomogeneities of gelatin gel can directly affect its application as a kind of functional material. The structural inhomogeneity of gelatin caused by the uneven and unstable temperature field has been analyzed by the finite element method in our previous work. Further in this paper, the performance inhomogeneity of gelatin which is closely connected with the actual application is numerically analyzed during the gelation process, which includes the inhomogeneities of the optical and mechanical properties of gelatin gels. The time required for reaching the gel point at different spatial grids is exhibited and discussed. The calculated results also show that the equilibrium shear modulus of gelatin is dependent on the thermal history.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.