36 resultados para Infinite integral
Resumo:
To resolve the diffraction problems of the pulsed wave field directly in the temporal domain, we extend the Rayleigh diffraction integrals to the temporal domain and then discuss the approximation condition of this diffraction formula. (C) 1997 Optical Society of America.
Resumo:
The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.
Resumo:
This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.
Resumo:
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.
Resumo:
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
Resumo:
We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.
Resumo:
In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, Holder, Maupertuis-Lagrange variational principles of integral style, the invariant quantities of the general, Voss, Holder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, Holder, Maupertuis-Lagrange variational principles axe deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of all the integral variational principles axe achieved.
Resumo:
The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to excited states 1s(2)2p, 1s(2)3l (l = s,p,d) and 1s(2)4l (l = s,p,d,f) at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.