18 resultados para Industries Energy consumption
Resumo:
针对深水滑翔机器人耐压壳体在深水中压缩变形和海水密度随水深增大而变化等因素造成驱动浮力变化问题,利用压缩变形和密度变化对驱动浮力影响的互补特性,归纳了载体耐压壳体结构优化设计方法。保证耐压壳体抗压条件和质量最小前提下采用结构优化设计方法,降低耐压壳体压缩变形和海水密度变化对驱动浮力的影响,提高系统能源的利用率。
Resumo:
描述了自治水下机器人搭载的三功能水下电动机械手的设计.鉴于自治水下机器人—机械手系统是运动学冗余的且自带能源,因此将系统阻力优化函数引入逆运动学求解,设计了基于系统能源消耗最小的系统协调运动规划算法.仿真表明,该算法在解决系统冗余度的同时,有效地减小了系统能源消耗.
Resumo:
As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.