21 resultados para In-memory databases
Resumo:
As a fast and effective method for approximate calculation of seismic numerical simulation, ray tracing method, which has important theory and practical application value, in terms of seismic theory and seismic simulation, inversion, migration, imaging, simplified from seismic theory according to geometric seismic, means that the main energy of seismic wave field propagates along ray paths in condition of high-frequency asymptotic approximation. Calculation of ray paths and traveltimes is one of key steps in seismic simulation, inversion, migration, and imaging. Integrated triangular grids layout on wavefront with wavefront reconstruction ray tracing method, the thesis puts forward wavefront reconstruction ray tracing method based on triangular grids layout on wavefront, achieves accurate and fast calculation of ray paths and traveltimes. This method has stable and reasonable ray distribution, and overcomes problems caused by shadows in conventional ray tracing methods. The application of triangular grids layout on wavefront, keeps all the triangular grids stable, and makes the division of grids and interpolation of a new ray convenient. This technology reduces grids and memory, and then improves calculation efficiency. It enhances calculation accuracy by accurate and effective description and division on wavefront. Ray tracing traveltime table, which shares the character of 2-D or 3-D scatter data, has great amount of data points in process of seismic simulation, inversion, migration, and imaging. Therefore the traveltime table file will be frequently read, and the calculation efficiency is very low. Due to these reasons, reasonable traveltime table compression will be very necessary. This thesis proposes surface fitting and scattered data compression with B-spline function method, applies to 2-D and 3-D traveltime table compression. In order to compress 2-D (3-D) traveltime table, first we need construct a smallest rectangular (cuboidal) region with regular grids to cover all the traveltime data points, through the coordinate range of them in 2-D surface (3-D space). Then the value of finite regular grids, which are stored in memory, can be calculated using least square method. The traveltime table can be decompressed when necessary, according to liner interpolation method of 2-D (3-D) B-spline function. In the above calculation, the coefficient matrix is stored using sparse method and the liner system equations are solved using LU decomposition based on the multi-frontal method according to the sparse character of the least square method matrix. This method is practiced successfully in several models, and the cubic B-spline function can be the best basal function for surface fitting. It make the construction surface smooth, has stable and effective compression with high approximate accuracy using regular grids. In this way, through constructing reasonable regular grids to insure the calculation efficiency and accuracy of compression and surface fitting, we achieved the aim of traveltime table compression. This greatly improves calculation efficiency in process of seismic simulation, inversion, migration, and imaging.
Resumo:
Previous studies showed that preferred directions in pointing judgments (e.g. imagine you are standing at X, facing Y, please point to Z) were consistent with the sequence participants used to learn locations of objects suggesting that the learning sequence may determine the intrinsic frames of reference in spatial memory. Numerous studies pay excessive attention to the selection of intrinsic frames of reference in spatial memory acquired from viewing an entire layout simultaneously. This research focused on the relationship between the learning sequence and the spatial reference direction in sequentially learning a layout based on the theory of intrinsic reference system. The results indicated that: 1. The intrinsic frame of reference used to specify objects’ locations in memory could not be determined by learning sequence. The learning sequence reflected the encoding of interobject spatial relations aligned with the intrinsic reference directions . 2. when the objects presented sequentially in a random order and the layout geometry structure was either all along or briefly, the preferred heading was determined by the symmetric axis. when the objects presented sequentially in a random order and the layout geometry structure was either not indicated or briefly presented after study, the preferred heading was determined by learning viewpoint. 3. When the objects were presented sequentially along a certain direction, whether the layout geometry structure displayed or not, the effect of the learning viewpoint on selection of intrinsic axis was observed. 4. When participants learned a layout during locomotion, whether the layout geometry structure displayed or not, the initial study perspective was used as a reference direction in memory. 5. Spatial reference direction was determined at the very beginning of learning objects’ locations. Spatial reference direction could not be changed once it had been choosed. These results not only contribute to specify in greater detail the nature of these spatial representations but also extend the intrinsic model of spatial memory.
Resumo:
The aim of the present study was to investigate whether people can establish two oblique spatial reference directions to represent objects’ locations in memory. Participants learned a layout of objects from two oblique viewpoints (0º and 225º) and made judgments of relative direction (“Imagine you are standing at X, facing Y, please point to Z”). Experiments 1 to 3 showed that performance in pointing were better at either one of the familiar imagined headings (0º and 225º) in most of the participants even when they were instructed to learn the layout along their actual heading at both learning directions, and when their actual headings at the test were the same as the imagined headings. Experiments 4 to 6 showed performance in pointing could be equivalent at the two familiar imagined headings for significant number of the participants when participants learned two different set of objects occupied at the same locations from the two learning viewpoints, and when participants learned the same layout of objects together with two different layouts from the two learning viewpoints. These results suggest that the orientation dependent performance in Experiments 1 to 3 cannot be attributed to the possibility that participants had formed two oblique spatial reference directions during learning but only used one of them during testing. Experiments 7 and 8 further showed that the performance of pointing at the two familiar viewpoints were significantly different when participants experienced one viewpoint by learning the actual layout and the other viewpoint by learning the map of the same layout, and when participants experienced two viewpoints alternatively over the ten times of learning sessions. All these results strongly suggest that people establish only one spatial reference system to represent locations of objects when they learn the same layout in the same background from two oblique viewpoints.
Resumo:
This dissertation systematically depicted and improved the application of Independent Component Analysis (ICA) to Functional Magnetic Resonance Imaging (fMRI), following the logic of verification, improvement, extension, and application. The concept of “reproducibility” was the philosophy throughout its four concluded studies. In the “verification” study, ICA was applied to the resting-state fMRI data, verified the resultant components with reproducibility, and examined the consistency of the results from ICA and traditional “seed voxel” method. At the meantime, the limitation of ICA application on fMRI data analysis was presented. In the “improvement” study, an improved ICA algorithm based on reproducibility, RAICAR, was developed to aid some of the limitations of ICA application. RAICAR was able to rank ICA components by reproducibility, determine the number of reliable components, and obtain more stable results. RAICAR provided useful tools for validation and interpretation of ICA results. In the “extension” study, RAICAR as well as the concept of “reproducibility” was extended to multi-subject ICA analysis, and gRAICAR algorithm was developed. gRAICAR allows some variation across subjects, examining common components among subjects. gRAICAR is also capable to detect potential subject grouping on some components. It is a new way for exploratory group analysis on fMRI. In the “application” study, two newly developed methods, RAICAR and gRAICAR, were used to investigate the effect of early music training on the brain mechanism of memory and learning. The results showed brain mechanism difference in memory retrieval and learning process between two groups of subjects. This study also verified the usefulness and importance of the new methods.
Resumo:
It is well established that memory functioning deteriorates with advancing age. However, research indicates that the magnitude of age-related memory deficits varies across different types of memory, and broad individual differences can be observed in the rate and timing of memory aging. The general aim of this study was to investigate the selectivity and variability of memory functioning in relation to anxiety. Firstly, memory effectiveness was assessed in episodic memory tasks with reality monitoring and external source monitoring paradigms, semantic memory tasks referred to general knowledge and word fluency, and perceptual priming task reflected in word completion. According to the scores on trait version of STAI, the high-trait and low-trait anxious subjects were screened respectively from young and old participants matched for educational level. Secondly, based on the results of the first part, concurrent primary and secondary tasks with probe technique assessing spare processing capacity were used to explore the relation between memory efficiency and anxiety. The first main findings were that: (a) there were no age-related differences in semantic memory assessed by general knowledge and PRS, whereas age effects were observed in episodic memory and semantic memory assessed by word fluency with stringent time restraints. (b) Furthermore, comparison of age-related deficits in source and item was not related to the presentation ways and encoding effort for source, but was affected by types of source. Specifically, memory was more sensitive to aging than item memory in external source monitoring processes involved in discriminating two external sources (i.e., female vs. male voices), but not in reality monitoring processes in discriminating between internal and external sources (i.e., acting vs. listening). The second main findings were that: (a) Anxiety had no effects on the effectiveness and efficiency of semantic memory in recall of general knowledge and PRS, but impaired those of semantic memory in word fluency. (b) The effects of anxiety on episodic memory were different between the old and the young. Both the effectiveness and the efficiency of episodic memory of the old were affected adversely by anxiety. More importantly, source recall in external source monitoring processes was observed to be more vulnerable to anxiety than item memory. The effectiveness of episodic memory of the young was relatively unrelated to anxiety, while anxiety might have adverse effect on their memory efficiency. These results indicated that: First, the selectivity of age-related memory deficits existed not only between memory systems, but also within episodic memory system. The tendency to forget the source even when the fact was retained in external source monitoring was suggested to be a specific feature of cognitive aging. Second, anxiety had adverse impact on the individual differences in memory aging, and mediated partial age-related differences in episodic memory performance.