23 resultados para IPEN-MB-1 REACTOR
Resumo:
从辽宁省大连海域分离到 1株海洋放线菌 ,编号MB 98,其产生的次生代谢产物对皮肤致病真菌白色念珠菌、石膏样毛癣菌、红色毛癣菌有很好的抑制作用。MB 98在大部分特征培养基上气丝为白色或白略粉 ,基丝为炒米黄或浅芒果棕 ,在所有培养基上均无色素产生 ,电镜观察MB 98孢子丝呈稀疏螺旋型 ,孢子呈椭圆或长圆柱型 ,孢子表面光滑 ,MB 98可以利用大部分碳源。根据分类鉴定研究 ,将MB 98定名为白色链霉菌海洋变种。
Resumo:
The selective oxidation of cyclohexane to cyclohexanol and cyclohexanone is an important chemical process and it has been paid more attentions recently. In the present work, the stainless steel reactor wall was found to influence the selective oxidation of cyclohexane very significantly, and a quasi-crystalline Ti45Zr35Ni17Cu3 alloy with the similar compositions as the reactor wall was used as a catalyst for the cyclohexane oxidation, as expected, a higher activity was obtained with it. The present results open up a new avenue for developing new catalyst for alkane oxidation.
Resumo:
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Metallocene based polyethylenes were prepared by SMOPEC's "metallocene adduct" technology in a gas phase fluidized bed model reactor. The C-13-NMR spectra of ethylene/1-butene (S-34) and ethylene/1-hexene(S-43) copolymers were studied in a manner analogous to that established by Hsieh and Cheng. The comonomer sequence distributions of copolymer samples were obtained. The results show that these metallocene based copolymers contain a small amount of butene and hexene, and the EE and EEE sequences are dominant.
Resumo:
Gas phase partial oxidation of toluene over V/Ti oxide catalysts has been successfully performed in a microchannel reactor, which provides very good mass and heat transfer conditions. With the elimination of hot spots, which are known as the most negative factors for partial oxidation of hydrocarbons, steady and uniform reaction conditions can be achieved in the catalyst bed by using, the microreactor. Since the best performance of the catalysts might be exploited, the selectivity of partial oxidation products of toluene has remarkably increased compared to the traditional packed fixed-bed reactor, even without the bother of modifying the catalysts, diluting the reactants or catalysts with inert contents to avoid hot spots or improve the diffusion and mixing. Furthermore, in virtue of its inherent safety features, when using pure oxygen as oxidant, the reactions were handled safety within the explosion limits in the microreactor. With TiO2 carried V2O5 as catalysts, the total selectivity of benzaldehyde and benzoic acid reaches around 60%, and the toluene conversion is about 10%. The conversion can go up without violent decline of selectivity, unlike most fixed bed reactors. Space time yield of 3.12 kg h(-1) L-1 calculated on the basis of the channel volume has been achieved. The influence of operating conditions has been investigated in detail in the microreactor. (c) 2005 Elsevier B.V. All rights reserved.