76 resultados para Hetero-coagulation
Resumo:
In this paper, we use a pulsed rapid thermal processing (RTP) approach to create an emitter layer of hetero-junction solar cell. The process parameters and crystallization behaviour are studied. The structural, optical and electric properties of the crystallized films are also investigated. Both the depth of PN junction and the conductivity of the emitter layer increase with the number of RTP pulses increasing. Simulation results show that efficiencies of such solar cells can exceed 15% with a lower interface recombination rate, but the highest efficiency is 11.65% in our experiments.
Resumo:
In this paper, we report the fabrication of Si-based double-hetero-epitaxial silicon on insulator (SOI) structure Si/gamma-Al2O3/Si. Firstly, single crystalline gamma-Al2O3(100) insulator films were grown epitaxially on Si(100) using the sources of TMA (Al(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. Afterwards, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a chemical vapor deposition method similar to the silicon on sapphire epitaxial growth. The Si/gamma-Al2O3/Si SOL materials are characterized in detail by reflect high-energy electron diffraction, X-ray diffraction and Auger energy spectrum (AES) techniques. The insulator layer of gamma-Al2O3 has an excellent dielectric property. The leakage current is less than 1 x 10(-10) A/cm(2) when the electric field is below 1.3 MV/ cm. The Si film grown on gamma-Al2O3/Si epi-substrates was single crystalline. Meanwhile, the AES depth profile of the SOL structure shows that the composition of gamma-Al2O3 film is uniform, and the carbon contamination is not observed. Additionally, the gamma-Al2O3/Si epi-substrates are suitable candidates as a platform for a variety of active layers such as GaN, SiC and GeSi. It shows a bright future for microelectronic and optical electronics applications. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Quality ZnO films were successfully grown on Si(100) substrate by low-pressure metal organic chemical vapor deposition method in temperature range of 300-500 degrees C using DEZn and N2O as precursor and oxygen source respectively. The crystal structure, optical properties and surface morphology of ZnO films were characterized by X-ray diffraction, optical refection and atomic force microscopy technologies. It was demonstrated that the crystalline structure and surface morphology of ZnO films strongly depend on the growth temperature.
Resumo:
The forward scattering light (FSL) received by the detector can cause uncertainties in turbidity measurement of the coagulation rate of colloidal dispersion, and this effect becomes more significant for large particles. In this study, the effect of FSL is investigated on the basis of calculations using the T-matrix method, an exact technique for the computation of nonspherical scattering. The theoretical formulation and relevant numerical implementation for predicting the contribution of FSL in the turbidity measurement is presented. To quantitatively estimate the degree of the influence of FSL, an influence ratio comparing the contribution of FSL to the pure transmitted light in the turbidity measurement is introduced. The influence ratios evaluated under various parametric conditions and the relevant analyses provide a guideline for properly choosing particle size, measuring wavelength to minimize the effect of FSL in turbidity measurement of coagulation rate.
Resumo:
The series of biradicals with m-phenylene coupling unit and hetero-spin centers were calculated compared with those possessing home-spin centers using AM1-CI method. A simple rule was proposed to design high spin molecules with ferromagnetic coupling unit and hetero-spin centers. Two neutral (or charged) hetero-spin centers resulted in high spin ground state, one neutral and another charged hetero-spin centers correspond to low spin ground state. The latter was ascribed to the huge splitting of two partially occupied molecular orbitals.
Resumo:
The hetero atom substituted aluminophosphate molecular sieves Me-VPI-5(Me = Mgt Ti, Sn, Si) were synthesized hydrothermally. Rare earth ions are originally doped into these microporous materials by aqueous solution ion exchange procedures. The phase transitions of the microporous materials are investigated by high-temperature and high-pressure experimental techniques. The influence of the phase transitions on the rare earth ions' spectral structures is discussed, With the increase of temperature, Eu(II)Mg-VPI-5 is converted into Eu(II)Mg-AIPO(4)-8, then into tridymite phase. The pressure has a notable influence on Eu(II) ion's spectral structures. The spectral structures have changed regularly with the increase of pressure.
Resumo:
Surface modification of montmorillonite by means of Mg2+ insertion reaction has been studied and a positively charged montmorillonite has been prepared. The effects of preparation temperature and Mg2+ concentration on the positive charge property of the clay and on the clay coagulating Heterosigma akashiwo have been studied. The results showed that the modified clay enhanced the coagulation and the used amount decreased to 1/5-1/10 of the original. The removal rates of Heterosigma akashiwo were correlated positively with positive charge on the clay in accordance with theoretical model.
Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number
Resumo:
The Peclet number is a useful index to estimate the importance of sedimentation as compared to the Brownian motion. However, how to choose the characteristic length scale for the Peclet number evaluation is rather critical because the diffusion length increases as the square root of the time whereas the drifting length is linearly related to time. Our Brownian dynamics simulation shows that the degree of sedimentation influence on the coagulation decreases when the dispersion volume fraction increases. Therefore using a fixed length, such as the diameter of particle, as the characteristic length scale for Peclet number evaluation is not a good choice when dealing with the influence of sedimentation on coagulation. The simulations demonstrated that environmental factors in the coagulation process, such as dispersion volume fraction and size distribution, should be taken into account for more reasonable evaluation of the sedimentation influence.
Resumo:
With a newly developed Material Failure Process Analysis code (MFPA(2D)), influence of hetero geneity on fracture processes and strength characterization of brittle disorder materials such as rock or concrete is numerically studied under uniaxial compression and tension conditions. It is found th at, due to the heterogeneity of the disordered material, relatively more diffused micro-fractures appear in the early stage of loading. Different from homogeneous materials such as glass, macro-crack nucleation starts well before the peak stress is reached and the crack propagation and coalescence can be traced, which can be taken as a precursory to predict the macro-fracture of the material. The presence of residual strength in the post-peak region and the resemblance in the stress-strain curves between tension and compression are significant results and are found to be dependent on the heterogeneity of the specimens. Examples showing the tentative applications of MFPA(2D) in modeling failure of composite materials and rock or civil engineering problem are also given in this paper.
Resumo:
自90年代初,分散体系聚集过程的微重力研究开始受到重视,并有一系列论文发表[1-4].Folkersma[3,4]等人在最近发表的文章中,公布了他们的最新研究结果.在探空火箭实现的微重力条件下,他们发现聚集速率要比地面实验快11倍多.为了解释这一现象,他们把重力的影响分为两部分,即沉降和自然对流.用密度匹配法,检验了在无沉降时的聚集过程.得到的结果是,聚集速率在无重力沉降影响时会比有沉降时快2.7倍.即便如此,微重力实验的聚集速率仍高出4.2倍.他们推断,这一巨大差异是由在地面上无法避免的自然对流造成的.
Resumo:
Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.
Resumo:
The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.