221 resultados para Height-diameter relationships
Resumo:
We previously proposed a method for estimating Young's modulus from instrumented nanoindentation data based on a model assuming that the indenter had a spherical-capped Berkovich geometry to take account of the bluntness effect. The method is now further improved by releasing the constraint on the tip shape, allowing it to have a much broader arbitrariness to range from a conical-tipped shape to a flat-ended shape, whereas the spherical-capped shape is just a special case in between. This method requires two parameters to specify a tip geometry, namely, a volume bluntness ratio V-r and a height bluntness ratio h(r). A set of functional relationships correlating nominal hardness/reduced elastic modulus ratio (H-n/E-r) and elastic work/total work ratio (W-e/W) were established based on dimensional analysis and finite element simulations, with each relationship specified by a set of V-r and h(r). Young's modulus of an indented material can be estimated from these relationships. The method was shown to be valid when applied to S45C carbon steel and 6061 aluminum alloy.
Resumo:
The relationship between hardness (H), reduced modulus (E-r), unloading work (W-u), and total work (W-t) of indentation is examined in detail experimentally and theoretically. Experimental study verifies the approximate linear relationship. Theoretical analysis confirms it. Furthermore, the solutions to the conical indentation in elastic-perfectly plastic solid, including elastic work (W-e), H, W-t, and W-u are obtained using Johnson's expanding cavity model and Lame solution. Consequently, it is found that the W-e should be distinguished from W-u, rather than their equivalence as suggested in ISO14577, and (H/E-r)/(W-u/W-t) depends mainly on the conical angle, which are also verified with numerical simulations. (C) 2008 American Institute of Physics.
Resumo:
In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.
Resumo:
Centrifugal experiments were carried out to investigate the responses of suction bucket foundations under horizontal and vertical dynamic loading. It is shown that when the loading amplitude is over a critical value, the sand at the upper part around the bucket is softened or even liquefied. The excess pore pressure decreases from the upper part to the lower part of the sand layer in the vertical direction and decreases radially from the bucket's side wall in the horizontal direction. Large settlements of the bucket and the sand layer around the bucket are induced by dynamic loading. The dynamic responses of the bucket with smaller height (the same diameter) are heavier.
Resumo:
The dynamic response of bed height and concentration waves in liquid-solid fluidized beds to a step change in the fluidization velocity is considered. We experimentally study the liquid-solid fluidized beds, spherical beadings, with sizes ranging from 230 to 270 mesh and the inner diameter of columns made from glass is 2.4 mm. Experimental results find that under certain conditions, fine particles with large Richardson-Zaki exponent n display different dynamic behavior from usual particles with smaller n during expansion and collapse of the fluidized state. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
二十世纪八十年代,当比利时冶金研究中心(CRM)开发出CO_2激光毛化冷轧辊技术后,尝试用YAG激光进行轧辊毛化一直吸引着众多的研究者,这是因为YAG(1.06μm)激光波长比CO_2(10.6μm)激光波长短一个量级,材料对YAG激光有更高的吸收率,并用YAG激光可以聚焦到更小的光斑尺寸,同时使用电信号驱动的声光开关技术便于对毛化分布进行可设定控制。但是用传统声光调制的YAG激光虽然可以碇以很高的脉冲频率(>30kHz),但单脉冲有量仅为10mJ左右,难以达到辊面毛化粗糙度的要求,因此人们认为YAG激光用于毛化的主要困难是脉冲能量太小。
Resumo:
In this paper, available elimination techniques are assessed. OLGA2000 software is used to simulate severe slugging formation mechanism in certain offshore riser. The simulation results show that pressure fluctuations of riser base and riser top is very large and severe slugging easily forms. Sensibility analysis shows that the measures and methods which include properly reducing pipe riser diameter, reducing water cut increasing terminal pressure, decreasing the height and inclination of riser and increasing GOR can eliminate or control severe slugging in riser pipe.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D
Resumo:
Using analytical and finite element modeling, we examine the relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in viscoelastic solids with either displacement or load as the independent variable. We then investigate whether the Oliver-Pharr method for determining the contact depth and contact radius, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to spherical indentation in viscoelastic solids. Finally, the analytical and numerical results are used to answer questions raised in recent literature about measuring viscoelastic properties from instrumented spherical indentation experiments.
Resumo:
Resumo:
A large diameter cylinder inserted in soils is a new type of engineering structures used in offshore and port engineering. The mechanism of its bearing capacity and the analysis of its stability are important to its design and applications. In this paper, the finite element method is used to analyze the reacting forces of the soft soil foundation on the structure under the wave action. A simplified method is proposed, based on the plastic limit method, for the safety and stability analysis. Our analysis shows that the assumptions made in this paper and the mechanism used are reasonable, and the results obtained are appropriate. The calculation method is very efficient and can be used to evaluate main parameters of the structure in its preliminary designs.
Resumo:
In this paper, the mechanical behavior of 30CrMnSiA steel after heating at a high rate are investigated experimentally and theoretically, including a detailed discussion of the effects of strain rate and temperature. Two constitutive models are presented to describe the mechanical response of this material after heating at a high rate, and verified by experimental results. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recently, the size dependence of mechanical behaviors, particularly the yield strength and plastic deformation mode, of bulk metallic glasses (BMG) has created a great deal of interest. Contradicting conclusions have been drawn by different research groups, based on various experiments on different BMG systems. Based on in situ compression transmission electron microscopy (TEM) experiments on Zr41Ti14Cu12.5Ni10Be22.5 (Vit 1) nanopillars, this paper provides strong evidence that shear banding still prevails at specimen length scales as small as 150 nm in diameter. This is supported by in situ and ex situ images of shear bands, and by the carefully recorded displacement bursts under load control its well as load drops under displacement control. Finite element modeling of the stress state within the pillar shows that the unavoidable geometry constraints accompanying such experiments impart a strong effect on the experimental results, including non-uniform stress distributions and high level hydrostatic pressures. The seemingly improved compressive ductility is believed to be due to such geometry constraints. Observations underscore the notion that the mechanical behavior of metallic glasses, including strength and plastic deformation mode, is size independent at least in Vit 1. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In near wall measurements with microPIV/PTV, whether seeding particles can be effectively used to detect local fluid velocity is a
crucial problem. This talk presents our recent measurements in microchannels [1][2]. Based on measured velocity profiles with 200nm
and 50nm in pure water, we found that the measured velocity profiles are agreed with the theoretical values in the middle of channel,
but large deviations between measured data and theoretical prediction appear close to wall (0.25mm