369 resultados para Heavy-ion collision
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model, the dynamics of strangeness (K-0,K-+, Lambda, and Sigma(-,0,+)) production in heavy-ion collisions near threshold energies is investigated systematically, with the strange particles considered to be produced mainly by inelastic collisions of baryon-baryon and pion-baryon. Collisions in the region of suprasaturation densities of the dense baryonic matter formed in heavy-ion collisions dominate the yields of strangeness production. Total multiplicities as functions of incident energies and collision centralities are calculated with the Skyrme parameter SLy6. The excitation function of strangeness production is analyzed and also compared with the KaoS data for K+ production in the reactions C-12 + C-12 and Au-197 + Au-197.
Resumo:
Within the framework of the improved isospin-dependent quantum molecular dynamics model, the dynamics of pion emission in heavy-ion collisions in the region of 1A GeV energies as a probe of nuclear symmetry energy at suprasaturation densities is investigated systematically. The total pion multiplicities and the pi(-)/pi(+) yields are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII and also for the cases of different stiffness of symmetry energy with the parameter SLy6. The influence of Coulomb potential, symmetry energy, and in-medium pion potential on the pion production is investigated and compared to each other by analyzing the distributions of transverse momentum and longitudinal rapidity and also the excitation functions of the total pion and the pi(-)/pi(+) ratio. The directed flow, elliptic flow, and polar-angle distributions are calculated for the cases of different collision centralities and also the various stiffnesses of the symmetry energies. A comparison of the calculations with the available experimental data is performed.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Resumo:
A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Photonic crystals (PC) have received extensive attention for the photonic band gap (PBG). The polystyrene (PS) particles bottom-up approach is a productive method for photonic crystal manufacture, this kind of photonic crystals having an unique PBG that depends on the particle's shape, sizes and defects. Heavy ion irradiation is a very useful method to induce defects in PC and change the shapes of the particles to tune the PBG. MeV heavy ion irradiation leads to an anisotropic deformation of the particles from spherical to ellipsoidal, the aspect ratio of which can be precisely controlled by using the ion energy and flux. Sub-micrometer PS particles were deposited on a Cu substrate and were irradiated at 230 K by using heavy ion energy and fluence in the range from 2 to 10 MeV and 1 x 10(14) cm(-2) to 1 x 10(15) cm(-2); respectively.
Resumo:
Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 1091 GeV/u C6+particles or 108235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running,the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, the pion emission in heavy-ion collisions in the region 1AGeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances ∆(1232) and N∗(1440). The in-medium dependence and Coulomb effects of the pion production are included in the calculation. Total pion multiplicity and π−/π+ yields are calculated for the reaction 197Au+197Au in central collisions for selected Skyrme parameters SkP, SLy6,Ska, SIII and compared them with the measured data by the FOPI collaboration.
Resumo:
A high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences (CAS). A quadrupole focusing system, in combination with a series of slits, has been designed here. The IMP microbeam system is described in detail. The intrinsic and parasitic aberrations associated with the magnets are simulated. The ion beam optics of this microbeam system is investigated systematically. Then the optimized initial beam parameters are given for high spatial resolution and high hitting rates.