274 resultados para Heavy
Resumo:
In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2. Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus). Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present study was carried out to investigate contamination of heavy metals in 19 fish species from the Banan section of Chongqing in the Three Gorges, Yangtze River. The results showed that the mean concentrations of heavy metals were higher in intestine than muscle, except zinc in upper strata. In the fish inhabiting the upper strata, there were significant differences between mean concentrations of As, Cr, Cu and Hg in muscle and intestine (P <0.05). There were also significant differences between mean concentrations of Cr and Cu in muscle and intestine in the fish inhabiting middle strata. However, significant differences between mean concentrations of As, Cd, Hg, Pb and Zn were measured in fish inhabiting bottom strata in both intestine and muscle tissues (P <0.05). For the fish inhabiting different strata, the concentrations of As, Cd, Cr, Cu, Hg and Ph in muscle and intestine of the fish from bottom strata (BS) were higher than those in both upper strata (US) and middle strata (MS); whereas a higher concentration of Zn was measured in muscle and intestine from fish inhabiting upper strata. Mean metal concentrations were found to be higher in age 11 than those in age I in Coreius heterodon (2- and 1-year odl fish respectively). The overall results indicated that fish muscle in the Banan section were slightly contaminated by heavy metals, but did not exceed Chinese food standards.
Resumo:
Toxic metals introduced into aquatic environments by human activities accumulation in sediments. A common notion is that the association of metals with acid volatile sulfides (AVS) affords a mechanism for partitioning metals from water to solid phase, thereby reducing biological availability. However, variation in environmental conditions can mobilize the sediment-bound metal and result in adverse environmental impacts. The AVS levels and the effect of AVS on the fate of Cu, Cd, Zn, Ni in sediments in the the Changjiang River, a suboxic river with sandy bottom sediment and the Donghu Lake, a anoxic lake with muddy sediment in China, were compared through aeration, static adsorption and release experiments in laboratory. Sips isotherm equation, kinetic equation and grade ion exchange theory were used to describe the heavy metal adsorb and release process. The results showed that AVS level in the lake sediment are higher than that of the river. Heavy metals in the overlying water can transfer to sediments incessantly as long as the sediment remains undisturbed. The metal release process is mainly related to AVS oxidation in lake sediment while also related to Org-C and Fe-Mn oxyhydroxide oxidation in river sediment. The effect of sulfides on Zn and Ni is high, followed by Cd, and Cu is easy bound to Org-C. AVS plays a major role in controlling metals activity in lake sediment and its presence increase the adsorption capacity both of the lake and river sediments.
Resumo:
Goal, Scope and Background. In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. Methods. The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. Results and Discussion. Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. Conclusions. Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. Recommendations and Outlook. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.
Resumo:
Goal, Scope and Background. As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. Methods. The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. Results and Discussion. Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. Conclusions. There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. Recommendations and Outlook. To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.
Resumo:
Goal, Scope and Background. Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. Methods. Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni are included also in part as well. Results and Discussion. In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of. the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 pg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. Conclusions. In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. Recommendations and Outlook. To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.
Resumo:
A twin-shaped constructed wetland (CW) comprising a vertical flow (inflow) chamber with Cyperus alternifolius followed by a reverse-vertical flow (outflow) chamber with Villarsia exaltata was assessed for decontamination of artificial wastewater polluted by heavy metals. After application of Cd, Cu, Pb, Zn over 150 days, together with Al and Mn during the final 114 days, no heavy metals with the exception of Mn could be detected in either the drainage zone at the bottom, shared by both chambers, or in the effluent. The inflow chamber was, therefore, seen to be predominantly responsible for the decontamination process of more toxic metal species with final concentrations far below WHO drinking-water standards. About one-third of the applied Cu and Mn was absorbed, predominantly by lateral roots of C. alternifolius. Lower accumulation levels were observed for Zn (5%), Cd (6%), Al (13%). and Pb (14%). Contents of Cd, Cu, Mn, and Zn in soil were highest in top layer, while Al and Pb were evenly distributed through the whole soil column. Metal species accumulating mainly in the top layer can be removed mechanically. A vertical flow CW with C. alternifolius is an effective tool in phytoremediation for treatment of water polluted with heavy metals. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the Rashba SOC and the temperature. It is found that the sawtooth-like de Haas-van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.
Resumo:
A modified version of the Jain-Roulston (J-R) model is developed that takes into account the compensation effect of B to Ge in strained SiGe layers for the first time. Based on this new model, the distribution of the bandgap narrowing (BGN) between the conduction and valence bands is calculated. The influence of this distribution on the transport characteristics of abrupt SiGe heterojunction bipolar transistors (HBTs) has been further considered by using the tunnelling and thermionic emission mechanisms instead of the drift and diffusion mechanisms at the interfaces where discontinuities in energy levels appear. The results show that our modified J-R model better fits the experimental values, and the energy band structure has a strong influence on electrical characteristics.