186 resultados para Hénon-like attractor
Resumo:
植生克雷伯氏菌(Klebsiella planticola 19-1)是从新疆鄯善地区玉米根际分离得到的一株联合固氮菌。在40℃高温下有较强的乙炔还原活性。 本工作利用Southern Blot分子杂交技术, 以Klebsiella pneumoniae的nifA为探针,证明了在K.planticola 19-1中存在nifA-like基因,由nifH-lacZ实验推论其nifA-like基因产物对高温相对稳定。经过大质粒电泳和Southern Blot分子杂交,发现nifA-like基因定位于染色体外的大质粒上。本工作进一步克隆了含有K.plonticola 19-1的nifA-like基因的DNA片段,做了它的限制性酶切图谱,并将nifA-like基因初步定位。
Resumo:
The origin of new exons is an important mechanism for proteome diversity. Here, we report the recurrent origination of new exons in mammalian chromodomain Y-like (CDYL) genes and the functional consequences associated with the acquisition of the new exons
Resumo:
Stejnulxin, a novel snake C-type lectin-like protein with potent platelet activating activity, was purified and characterized from Trimeresurus stejnegeri venom. Under non-reducing conditions, it migrated on a SDS-polyacrylamide gel with an apparent molecular mass of 120 kDa. On reduction, it separated into three polypeptide subunits with apparent molecular masses of 16 kDa (alpha), 20 kDa (beta(1)) and 22 kDa (beta(2)), respectively. The complete amino acid sequences of its subunits were deduced from cloned cDNAs. The N-terminal sequencing and cDNA cloning indicated that beta(1) and beta(2) subunits of stejnulxin have identical amino acid sequences and each contains two N-glycosylation sites. Accordingly, the molecular mass difference between 1 and 2 is caused by glycosylation heterogenity. The subunit amino acid sequences of stejnulxin are similar to those of convulxin, with sequence identities of 52.6% and 66.4% for the U. and beta, respectively. Stejnulxin induced human platelet aggregation in a dose-dependent manner. Antibodies against UNA inhibited the aggregation response to stejnulxin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in stejnulxin-induced platelet aggregation. Antibodies against GPIbalpha or alpha(2)beta(1) as well as echicetin or rhodocetin had no significant effect on stejnulxin-induced platelet aggregation. However, platelet activation induced by stejnulxin was blocked by anti-GPVI antibodies. In addition, stejnulxin induced a tyrosine phosphorylation profile in platelets that resembled that produced by convulxin. Biotinylated stejnulxin bound specifically to platelet membrane GPVI.
Resumo:
TMVA is a C-type lectin-like protein with potent platelet activating activity from Trimeresurus mucrosquamatus venom. In the absence of von Willebrand factor (vWF), TMVA dose-dependently induced aggregation of washed platelets. Anti-GP Ib monoclonal antib