30 resultados para Guaranteed annual wage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Change in thermal conditions can substantially affect crop growth, cropping systems, agricultural production and land use. In the present study, we used annual accumulated temperatures > 10 degrees C (AAT10) as an indicator to investigate the spatio-temporal changes in thermal conditions across China from the late 1980s to 2000, with a spatial resolution of 1 x 1 km. We also investigated the effects of the spatio-temporal changes on cultivated land use and cropping systems. We found that AAT10 has increased on a national scale since the late 1980s, Particularly, 3.16 x 10(5) km(2) of land moved from the spring wheat zone (AAT10: 1600 to 3400 degrees C) to the winter wheat zone (AAT10: 3400 to 4500 degrees C). Changes in thermal conditions had large influences on cultivated land area and cropping systems. The areas of cultivated land have increased in regions with increasing AAT10, and the cropping rotation index has increased since the late 1980s. Single cropping was replaced by 3 crops in 2 years in many regions, and areas of winter wheat cultivation were shifted northward in some areas, such as in the eastern Inner Mongolia Autonomous Region and in western Liaoning and Jilin Provinces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Technology RD Program [2006BAD03A02]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical-biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, competition between buoyancy mechanisms and mixing dynamics largely determines the water column structure in a shelf sea. A three dimensional baroclinic ocean model forced by surface heat fluxes and the 2.5 order Mellor-Yamada turbulence scheme is used to simulate the annual cycle of the temperature in the Bohai Sea. The difference between the sea surface temperature (SST) and sea bottom temperature (SBT) is used to examine the evolution of its vertical stratification. It is found that the water column is well-mixed from October to March and that the seasonal thermocline appears in April, peaks in July and then weakens afterwards, closely following the heat budget. In addition, the Loder parameter based on the topography and tidal current amplitude is also computed in order to examine tidal fronts in the BS, which are evident in summer months when the wind stirring mechanism is weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the alpine region of the Tibetan Plateau, five perennial grass cultivars, Bromus inermis (B), Elymus nutans (E), Clinelymus nutans (C), Agropyron cristatum (A), and Poa crymophila (P) were combined into nine communities with different compositions and ratios, B+C, E+A, B+E+A, E+B+C,C+E+A,B+E+C+A,B+C+A+P,B+E+A+P and E+C+A+P. Each combination was sown in six 10 X 10 m plots with three hand-weeded plots and three natural-growing plots in a completely randomised design in 1998. A field experiment studied the performance of these perennial grass combinations under the competitive interference of annual weeds in 3 consecutive years from 1998 to 2000. The results showed that annual weeds occupied more space and suppressed the growth of the grasses due to earlier germination and quicker growth in the establishment year, but this pattern changed in the second and third years. Leaf area indexes (LAIs) of grasses were greatly decreased by the competitive interference of weeds, and the negative effect of weeds on LAIs of grasses declined and stabilised in the second and third years. E+B+C, B+E+C+A, and B+E+A+P possessed relatively higher LAIs (P < 0.05) among all grass combinations and their LAIs were close to five when the competitive interference of weeds was removed. Grasses were competitively inferior to weeds in the establishment year, although their competitive ability (aggressivities) increased throughout the growing season. In the second and third years, grasses were competitively superior to weeds, and their competitive ability decreased from May until August and increased in September. Dry matter (DM) yields of grasses were reduced by 29.8-74.1% in the establishment year, 11.0-64.9% in the second year, and 16.0-55.8% in the third year by the competitive interference of weeds. B+E+C+A and B+E+A+P can produce around 14 t/ha of DM yields, significantly higher (P < 0.05) than the production of the other grass combinations in the second and third years after the competitive interference of weeds was removed. It was preliminarily concluded that removal of competitive interference of weeds increased the LAIs of all grass swards and improved the light interception of grasses, thus promoting the production of perennial grass pastures. The germination stage of the grasses in the establishment year was the critical period for weeding and suppression of weeds should occur at an early stage of plant growth. The grass combinations of B+E+C+A and B+E+A+P were productive and can be extensively established in the alpine regions of the Tibetan Plateau. Two or three growing seasons will be needed before determining success of establishment of grass mixtures under the alpine conditions of the Tibetan Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the alpine region of the Qinghai-Tibetan Plateau four indigenous perennial grass species Bromus inermis (BI), Elymus sibiricus (ES), Elymus nutans (EN) and Agropyron cristatum (AC) were cultivated as three mixtures with different compositions and seeding rates, BI + EN, BI + ES + AC and BI + ES + EN + AC. From 1998 to 2001 there were three different weeding treatments: never weeded (CK); weeded on three occasions in the first year (1-y) and weeded on three occasions in both the first and second year (2-y) and their effect of grass combination and interactions on sward productivity and persistence was measured. Intense competitive interference by weedy annuals reduced dry matter (DM) yield of the swards. Grass combination significantly affected sward DM yields, leaf area index (LAI) and foliar canopy cover and also species composition DM and LAI, and species plant cover. Interaction between weeding treatments and grass combination was significant for sward DM yield, LAI and canopy cover, but not on species composition for DM, LAI or species plant cover. Grass mixture BI + ES + EN + AC gave the highest sward DM yield and LAI for both weeding and non-weeding treatments. Species ES and EN were competitively superior to the others. Annual weedy forbs must be controlled to obtain productive and stable mixtures of perennial grasses, and germination/emergence is the most important time for removal. Weeding three times (late May, late June and mid-July) in the establishment year is enough to maintain the production and persistence of perennial grass mixtures in the following growing seasons. Extra weeding three times in the second growing year makes only a slight improvement in productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

针对具有时变不确定性且不确定性界为椭球的线性系统提出了一种新的具有自适应机制的鲁棒保性能控制器设计方法。首先,引入一个具有可由自适应律在线调整的可调参数的目标模型,通过该参数来保证由目标模型与被控模型所获得的误差系统渐近稳定。结合保证目标模型稳定性的设计,最终形成保证闭环系统稳定且控制器增益仿射依赖于可调参数的鲁棒保性能跟踪控制器。应用于安装在试验平台上的小型直升机航向控制中,仿真试验表明了该方法的有效性。