91 resultados para Giant River Prawn
Resumo:
大车前(Plantago major L. "Giant Turkish.")不仅有很高的药用价值,在生态学研究方面也是重要模式植物。大车前的组织培养工作,目前报道很少。对其组织培养体系的建立,为筛选大车前耐盐突变体和基因转化建立高效的体外再生系统和实验平台体系。通过愈伤组织诱导和直接不定芽再生途径, 建立了大车前(Plantago major L. "Giant Turkish.")的快速高效再生系统。叶片外植体在含有1.0 mg/L NAA的MS培养基中培养3周后,形成愈伤组织,愈伤组织在含4.0 mg/L 6-BA的MS培养基中成功再生,得到完整植株。种子外植体在含0.2 mg/L IAA和1.0 mg/L TDZ的MS培养基中培养4周后产生大量的丛生芽,对9株再生植株进行RAPD检测表明,部分植株在DNA水平上发生了变异。 植物抵御盐胁迫的一个重要机制是在液泡中积累Na+,从而使细胞质内Na+保持在较低水平,并且降低细胞渗透势。Na+运输到液泡是由液泡Na+/H+逆向转运蛋白完成的。本实验室已从盐生植物盐角草(Salicornia europaea)和番杏(Tetragonia tetragonioides)中分别克隆得到SeNHX1和TtNHX1基因。本文研究了SeNHX1和TtNHX1基因在酵母突变体里的作用。TtNHX1和SeNHX1蛋白在缺陷型酵母菌株里的表达能够提高这些菌株对NaCl、LiCl和潮霉素的抗性,提高到与野生型相当的抗性水平。说明TtNHX1和SeNHX1有着与酵母ScNHX1相似的细胞定位和作用机制,是ScNHX1的功能类似蛋白。
Resumo:
Dalai-lamae (Ovis ammon dalai-lamae), Gobi (O. a. darwini), Kara Tau (O. a. nigrimontana) and Tibetan (O. a. hodgsoni) argali share a 2n = 56 diploid chromosome number and a karyotype consisting of 2 pairs of biarmed and 25 pairs of acrocentric autosomes, a large acrocentric X and a minute Y chromosome. The Giemsa-banding patterns of the largest pair of biarmed chromosomes were identical to those of the largest biarmed chromosomes in all wild sheep and domestic sheep of the genus Ovis. The banding patterns of the second pair of biarmed chromosomes (metacentric) were identical to the third pair of biarmed chromosomes in Ovis with 2n = 54 and to the third largest pair of chromosomes in the 2n = 52 karyotype of Siberian snow sheep (O. nivicola). The G-banded karyotypes of dalai-lamae, darwini, hodgsoni and nigrimontana are consistent with all subspecies of argali (O. ammon), except that the Y chromosome is acrocentric instead of metacentric as typical of the argaliform wild sheep and Ovis. The Dalai-lamae and Tibetan argali specimens exhibit the light-colored, long-haired ruffs and body coloration typical of argalis from the Tibetan Plateau. The Gobi argali, from the extreme western Gobi, is similar to the dark phase argali.
Resumo:
Giant panda hair samples obtained by noninvasive methods served as a source of DNA for amplification of seven giant panda microsatellite loci utilizing the polymerase chain reaction. Thirteen giant pandas held in Chinese zoos were tested for identification of paternity. Some males listed as sires have been excluded as the biological father of captive-born giant pandas. Because of the death of some potential sires, paternity is still not assigned for some giant pandas, although there is a high likelihood that paternity assignment could be made if postmortem samples are available for genetic analysis. The DNA microsatellite variation assayed by the test we have developed provides a rapid, highly informative, and noninvasive method for paternity identification in giant pandas. (C) 1994 Wiley-Liss, Inc.
Resumo:
About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to same extent.
Resumo:
To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.
Resumo:
By using PCR cloning techniques, the DNA sequences of the HMG box regions of six Sox genes (pSox) and the zinc finger domains of two Zfx genes (pZfx) in the giant panda were identified. The giant panda Sox genes fell into two subfamilies, SOX-S1 and SOX-S2. The pSox and pZfx genes of the giant panda were highly homologous to the corresponding genes in mammals and revealed close substitution rates to those in the primates.