55 resultados para Germanic peoples.
Resumo:
By applying for molecular dynamics (MD) simulation and Griffith fracture criterion, the brittle behavior of crack extension of mode I type is investigated. The critical stress intensity factor (SIF)K-Ic(MD) of crack extension is calculated, and the evolution of atoms near crack tip is observed. It is found that K-Ic(MD) is in good agreement with the Griffith ftacture criterion K-Ic(Griffith).
Resumo:
Experiments were conducted on copper subjected to High Pressure Torsion to investigate the evolution of microstructure and microhardness with shear strain, gamma. Observations have been carried out in the longitudinal section for a proper demonstration of the structure morphology. An elongated dislocation cell/subgrain structure was observed at relatively low strain level. With increasing strain, the elongated subgrains transformed into elongated grains and finally into equiaxed grains with high angle grain boundaries. Measurements showed the hardness increases with increasing gamma then tends to saturations when gamma >5. The variation tendency of microhardness with gamma can be simulated by Voce-type equation.
Resumo:
A set of new formula of energy functions for ferroelectrics was proposed, and then the new basic equations were derived in this paper. The finite element formulation based on the new basic equations was improved to avoid the equivalent nodal load produced by remnant polarization. With regard to the fundamentals of mathematics and physics, the new energy functions and basic equations are reasonable for the material element of ferroelectrics in finite element analysis.
Resumo:
A fractal approach was proposed to investigate the meso structures and size effect of metallic foams: For a series At foams of different relative densities, the information dimension method was applied to measure meso structures. The generalized sierpinski carpet was introduced to map the meso structures of the foam according to specific dimension. The results show that the fractal-based model can not only reveal the variation of yield strength with specimen size, but also bridge the meso structures and mechanical proper-ties of Al foams directly. Key words: metallic foams; fractal; size effect; meso structures
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.
Resumo:
A steady-state subsonic interface crack propagating between an elastic solid and a rigid substrate with crack face contact is studied. Two cases with respective to the contact length are considered, i.e., semi-infinite and finite crack face contact. Different from a stationary or an open subsonic interface crack, stress singularity at the crack tip in the present paper is found to be non-oscillatory. Furthermore, in the semi-infinite contact case, the singularity of the stress field near the crack tip is less than 1/2. In the finite contact case, no singularity exists near the crack tip, but less than 1/2 singularity does at the end of the contact zone. In both cases, the singularity depends on the linear contact coefficient and the crack speed. Asymptotic solutions near the crack tip are given and analyzed. In order to satisfy the contact conditions, reasonable region of the linear contact coefficient is found. In addition, the solution predicts a non-zero-energy dissipation rate due to crack face contact.
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.
Resumo:
The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.
Resumo:
Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.
Resumo:
In this paper, the mechanical behavior of 30CrMnSiA steel after heating at a high rate are investigated experimentally and theoretically, including a detailed discussion of the effects of strain rate and temperature. Two constitutive models are presented to describe the mechanical response of this material after heating at a high rate, and verified by experimental results. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The research progress on high-enthalpy and hypersorlic flows having been achieved in the Institute of Mechanics, Chinese Academy of Sciences, is reported in this paper. The paper consists of three main parts: The first part is on the techniques to develop advanced hypersonic test facilities, in which the detonation-driven shock-reflected tunnel and the detonation-driven shock-expanded tube are introduced. The shock tunnel can be used for generating hypersonic flows of a Mach number ranging from 10 to 20, and the expansion tube is applicable to simulate the flows with a speed of 7 similar to 10km/s. The second part is dedicated to the shock tunnel nozzle flow diagnosis to examine properties of the hypersonic flows thus created. The third part is on experiments and numerical simulations. The experiments include measuring the aerodynamic pitching moment and heat transfer in hypersonic flows, and the numerical work reports nozzle flow simulations and flow non-equilibrium effects on the possible experiments that may be carried out on the above-mentioned hypersonic test facilities.