85 resultados para GLUCOSE METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

以成熟果实中不同葡萄糖/果糖(G/F)类型的6个桃品种(G/F≈1品种:‘冈山白’、‘山一白桃’和‘燕红’;高G/F品种:‘张黄7号’、‘龙246’和‘临白7号’)为试材,采用高效液相色谱法测定果实发育期果实和叶片中可溶性糖含量,并在盛花后74 d或101 d测定了‘冈山白’、‘山一白桃’、‘张黄 7号’和‘龙 246’新梢韧皮部中可溶性糖的含量;测定了果实发育过程中‘山一白桃’和‘临白7号’果实中的可溶性糖和淀粉代谢相关酶的活性。研究成熟果实中不同G/F类型桃果实内G/F差异的部位和时期;分析桃果实内G/F差异的可溶性糖代谢调控机理。 成熟果实中不同G/F类型桃果实中均以蔗糖作为主要碳水化合物积累形式,花后43–85 d蔗糖含量很低,随后持续快速积累直至果实成熟;花后43–85 d山梨醇有升高趋势,在果实成熟前40 d左右迅速降低;葡萄糖和果糖含量在果实发育早期较高,之后逐渐降低;但两类不同G/F桃在整个果实发育过程中G/F值与果实成熟时相似。叶片中贮藏的可溶性糖主要是蔗糖和山梨醇,在果实整个发育期间,G/F≈1品种叶片中G/F约1-3,而高G/F品种叶片中G/F约为2-7。G/F≈1品种‘冈山白’和‘山一白桃’与高G/F品种‘张黄 7号’和‘龙 246’韧皮部中山梨醇占总可溶性糖47-63%,显著高于蔗糖、葡萄糖和果糖的含量,G/F为0.8-0.91,且两类不同G/F桃品种间G/F值不存在显著差异。 成熟果实中G/F≈1类型的‘山一白桃’和高G/F值类型的‘临白7号’整个果实发育过程中,葡萄糖、山梨醇和淀粉的含量在这两个品种间一般没有明显差异;‘山一白桃’果实中的果糖含量显著高于‘临白7号’果实中的果糖;果实最后迅速生长期,‘山一白桃’果实中的蔗糖明显高于‘临白7号’。‘山一白桃’和‘临白7号’果实中的NAD+依赖型山梨醇脱氢酶(NAD+-SDH)活性低,两者有相似的变化趋势,一般无显著差异。‘临白7号’果实中的NADP+依赖型山梨醇脱氢酶(NADP+-SDH)和山梨醇氧化酶(SOX)活性一直高于‘山一白桃’,两者NADP+-SDH和SOX的活性分别在花后93-123 d和花后43-93 d有显著差异。‘临白7号’果实中的果糖激酶(FK)活性一般高于‘山一白桃’。花后43-93 d,‘临白7号’果实中的磷酸蔗糖合成酶(SPS)和蔗糖合成酶(SS)活性一般显著‘山一白桃’。果实最后迅速生长期,蔗糖快速积累,葡萄糖、果糖、山梨醇和淀粉含量迅速降低,同时伴随有SPS和SS活性的迅速升高。在整个果实发育过程中,两个品种果实中的淀粉酶活性较高,其果实中的淀粉含量和淀粉酶活性都有明显的下降趋势。 研究结果表明,整个果实发育过程中桃果实中均存在G/F≈1和高G/F现象,光合产物在韧皮部的运输对桃果实的G/F没有显著的影响,果实中G/F的差异主要由于果实内糖代谢差异所导致。‘临白7号’果实中山梨醇向果糖方向的转化能力与‘山一白桃’一般没有显著差异,由于不同时期较高的NADP+-SDH和SOX活性,使得山梨醇向葡萄糖方向的转化能力明显高于‘山一白桃’,同时,‘临白7号’果实中的FK活性一般高于‘山一白桃’,因此导致‘临白7号’果实中G/F高于‘山一白桃’。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以不同葡萄糖/果糖(G/F)类型的桃品种(正常G/F 品种:‘燕红’、‘冈山白’和‘山一白桃’;高G/F 品种:‘龙124’、‘龙246’、‘张黄7 号’和‘临白7 号’)为试材,测定果实发育期果实、叶片、韧皮部和木质部中糖和淀粉含量,并分别在果实第一迅速生长期、硬核期和成熟期测定了‘燕红’、‘山一白桃’、‘龙124’、‘龙 246’和‘临白7号’果实和叶片中己糖相关酶。研究不同G/F类型桃品种产生G/F差异的组织器官和时期,并且分析相关代谢酶调控机理。 两类不同G/F 桃果实中均以蔗糖作为主要碳水化合物积累形式,花后70 d前蔗糖含量很低,随后快速积累直至果实成熟;山梨醇含量较为稳定,高G/F品种‘龙124’两年间在未成熟果实中山梨醇含量高于正常 G/F品种;葡萄糖和果糖含量在果实第一迅速生长期积累,之后逐渐降低。高 G/F 品种‘龙124’和‘临白7号’成熟果实中葡萄糖含量高于‘龙246’和正常 G/F 品种。正常G/F品种果实、叶片、韧皮部和木质部中葡萄糖和果糖含量基本相等,G/F基本保持在0.7-1.5。高G/F品种果实、叶片中葡萄糖显著高于果糖,果实中G/F在1.6-8.8,叶片中G/F在果实未成熟时为2.5-9.3,在果实成熟期为14.5-21.3。然而韧皮部和木质部中葡萄糖略高于果糖或基本相等,但较正常G/F品种高。因此,光合产物在韧皮部的运输对桃果实的G/F 没有显著影响。 在第一迅速生长期和成熟期时,所有供试桃品种果实和叶片中合成己糖的NAD+-SDH 和 SOX较为活跃,而分解己糖的FRK、GLK和PGI则保持在较低水平;在果核硬化期则相反,果实和叶片中合成己糖的NAD+-SDH 和 SOX活性较低,而分解己糖的FRK、GLK和PGI则较为活跃。高G/F品种‘龙124’和‘龙246’在果核硬化期果实中的FRK、NADP+-SDH 和GLK活性显著高于正常G/F品种,而高G/F品种‘临白7号’则与正常G/F品种没有明显差异。可见,高G/F品种间己糖代谢调控机制也有所差异。此外,叶片中两种G/F类型间的己糖代谢相关酶差异并无明显规律,由此我们认为叶片存在与果实类似但相对独立的调控机制。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

下载PDF阅读器"氧糖剥夺"模型作为研究脑缺血的离体模型被广泛使用,该模型模拟了局灶性脑缺血的主要病理变化.然而在缺血病灶核心区与正常脑组织之间称为缺血半暗带的区域,脑血流也有程度不一的降低.为了模拟这种病理变化,发展了一种"不完全氧糖剥夺"的离体脑片模型,该模型满足两个条件,灌流液里氧气部分剥夺而葡萄糖含量降低;"氧糖剥夺"可以导致谷氨酸介导的兴奋性毒性,从而引起神经细胞的坏死.而A型γ-氨基丁酸受体(GABAAR)介导的神经元抑制性活动可以对抗谷氨酸引起的兴奋性毒性,因此近年来引起广泛的研究兴趣.而谷氨酸受体和γ-氨基丁酸受体功能在缺血半暗带是否有改变尚不得而知.因此本文采用海马脑片全细胞膜片钳的记录方法,研究"不完全氧糖剥夺"对海马CA1区神经元的A型γ-氨基丁酸受体介导的抑制性突触后膜电流(IPSCs)的影响.研究发现"不完全氧糖剥夺"使GABAAR介导的IPSCs的峰值增加而衰减时程延长.进一步研究发现该电流的峰值增加是由于GABAAR-氯离子通道的电导增加所致,而与氯离子的反转电位变化无关.这些发现提示在脑缺血的缺血半暗带区域GABAAR介导的神经元抑制性活动可能是增强的,这可能是神经元面对缺血状态产生自我保护的一种内稳态机制.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to evaluate the effect of dietary linolenic acid (LNA)linoleic acid (LA) ratio on growth performance, hepatic fatty acid profile and intermediary metabolism of juvenile yellow catfish Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets were formulated to contain incremental levels of LNA from 0 to 5% at the expense of corn oil (rich in LA), resulting in six dietary treatments with LNA to LA ratios ranging from 0.35 to 14.64. The experiment continued for 7 weeks. Best growth and feed intake were obtained in the fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). In contrast, feed conversion ratio was the lowest for fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). Dietary LNA to LA ratios significantly influenced viscerosomatic index and hepatosomatic index (P<0.05), but not condition factor (P>0.05). Body composition was also significantly influenced by dietary LNA to LA ratios (P<0.05). Generally, liver FA compositions reflected dietary FA profiles. Declining LA and increasing LNA contents in liver were observed with the increasing dietary LNA/LA ratios (P<0.05). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased with the increasing LNA to LA ratios, suggesting that yellow catfish could elongate and desaturate C18 polyunsaturated fatty acids into highly unsaturated fatty acids. As a consequence, the n-6 fatty acids (FA) declined, and total n-3 FA and n-3/n-6 ratios increased with the dietary ratios of LNA/LA (P<0.05). Dietary LNA to LA ratios significantly influenced several enzymatic activities involved in liver intermediary metabolism (P<0.05), such as lipoprotein lipase, hepatic lipase, pyruvate kinase, succinate dehydrogenase, malic dehydrogenase and lactate dehydrogenase, suggesting that dietary LNA/LA ratios had significant effects on nutrient metabolism in the liver. To our knowledge this is the first demonstration of the effects of dietary LNA to LA ratios on the enzymatic activities of liver in fish, which provides information on diet quality and utilization, and can also be used as an indicator of the nutritional status of this fish. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physiological differences for three bloom-forming cyanobacteria (Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Aphanizomenon flos-aquae) were investigated. In comparison with M. aeruginosa and A. flos-aquae, C. raciborskii exhibited a significantly higher concentration of carotenoids, higher values in maximum photosynthesis rate (P-m), apparent photosynthetic efficieny (a), and maximum electron transport rate (ETRmax) during the growth period. In addition, higher extracellular alkaline phosphatase activities and lower light compensation point (I-c) were also detected in C raciborskii (p < 0.05, ANOVA). Therefore, it is suggested that the higher photosynthetic activities, more effective uptake and utilization to phosphate, and low light requirements might play important roles in the occurrence and invasive behavior of C. raciborskii. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 mu g/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content. Reduced glutathione (GSH) and total glutathione (tGSH) content as well as glutathione reductase (GR), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) activities significantly increased after 3-4 days exposure in the highest two concentration treated groups, while decreased until reaching the control values except for GPX at day 6. Oxidized glutathione (GSSG) content markedly increased compared with control in high concentration MC-RR treated group after 6 days exposure. The GSH/GSSG ratio was much higher than control in 10 mu g/mL MC-RR treated group at day 4, but after 6 days exposure, the ratios in all treated groups were lower than that of the control group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.