37 resultados para GENE FLOW


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011 +/- 0.0002 and haplotypic diversity 0.65 +/- 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by F-st and Phi(st) yielded statistically significant population genetic structure (F-st = 0.44, P < 0.05; phi(st) = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

青杨作为一个本土树种,能较好的适应潮湿和寒冷的环境,对中国西部的人工造林有着重要的参考价值。在本实验中,选取7个中国西南地区分布的自然群体,用ISSR(inter-simple sequence repeats)作为分子标记研究其遗传多样性水平和遗传结构。通过筛选的8个ISSR引物,获得了158条清晰可重复的DNA条带,其中有156条具有多样性(占98.7%)。平均的Nei’s遗传多样性(h)为0.331;遗传分化系数(GST)为0.477,这表明有47.7%的遗传多样性发生在群体间。这种高水平的分化可能是由于当地复杂多变的地形和气候特点阻碍了基因流而引起的。此外在这7个青杨群体中,遗传距离和地理距离并未体现出有显著相关性(r=0.3122, P>0.05)。联合遗传距离和地理距离分析,鉴定出两处低水平基因交流的地区, 探讨其遗传障碍形成原因。 As a native species to China, Populus cathayana Rehd is well-adapted to the wet and cold environments where it occurs. It is considered to be an important reforestation species in western China. In the present study, we surveyed the level of genetic variation and the pattern of genetic structure in seven natural populations of P. cathayana, originating from the southeastern Qinghai-Tibetan Plateau of China, by using ISSR (inter-simple sequence repeats) markers. Based on eight primers, 158 clear and reproducible DNA fragments were generated, of which 156 (98.7%) were polymorphic. The average value of Nei's gene diversity (h) equaled 0.331. The coefficient of genetic differentiation (GST) equaled 0.477, which means that 47.7% of the total molecular variance existed among populations. Such a high level of divergence present among populations may be caused by the complex topography and variable climatic conditions present in the southeastern Qinghai-Tibetan Plateau which effectively restrict gene flow. Moreover, there is a lack of significant association between genetic and geographical distances (r=0.3122, P>0.05) in the populations of P. cathayana. The application of a novel method, which combines geographical coordinates and genetic differentiation to detect barriers for gene flow, allowed us to identify two zones of lowered gene flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

青杨(Populus cathayana Rehd.)是青杨派杨树的主要树种之一,为我国特有乡土树种,其主要分布区之一是我国的青藏高原,集中分布地带在甘肃省中部及青海省东部,四川省西北部岷江上游和松潘等地区。本研究以青藏高原东缘青杨天然分布区的6个群体143个个体为材料,用AFLP、SSR和叶绿体SSR分子标记分析青杨天然群体的遗传多样性,分析其遗传结构和分化,比较6个群体间遗传多样性的高低和群体间的遗传关系。旨在为青杨基因资源评价、保护与保存、遗传改良策略制定等提供科学理论依据。通过以上研究,得出如下主要研究结果: 1 AFLP分子标记研究结果 采用4对选择性引物对6个青杨天然群体143个个体进行分析,扩增谱带分析共检测到175个位点,其中173个位点表现为多态,多态位点百分率高达98.9%。从整体上表现出较高的遗传多样性,Nei’s基因多样度(h)水平为0.306。从青杨天然群体位点分布来看,有高达20%的位点(32位点)为群体所特有,仅有9.14%的位点(16位点)在所有群体中存在。群体间的遗传分化极大,所有遗传变异中,有48.9%的遗传变异存在于群体间。在个体群丛(Individuals cluster)和主坐标(PCO analysis)分析中,青杨各群体未呈现任何地理模式,Mantel检测也显示各群体间遗传距离与地理距离无明显相关。研究认为,由于地理和空间上大尺度的隔离和地形地貌复杂使得群体间无法进行基因交流,导致群体间遗传分化极大,另外各群体在不同的选择压力下,经历各自独立的进化历程,这些都可能导致群体间遗传距离与地理距离的不相关。 2 SSR分子标记研究结果 在SSR分析中,7个位点在6个青杨天然群体143个个体中共检测到79个等位基因,每位点检测到的等位基因数在5-16之间,平均11.3个,总体上多态位点百分率达100%。平均观察杂合度和期望杂合度分别为0.792和0.802。Hardy-Weinberg平衡检验表明青杨大部分群体都处于非平衡状态,群体大部分位点都是偏离哈迪-温伯格平衡(76.3%),只有23.7%的测验满足哈迪-温伯格平衡。分析青杨天然群体内和群体间的遗传变异,基因分化系数(GST)为0.373,即有62.7%的遗传变异存在群体内,37.3%的遗传变异存在群体间。群体内的遗传变异高于群体间水平。根据各群体遗传距离UPGMA聚类分析,有来自相临分布区、近似气候类型的群体聚在一起的趋势,但Mantel检测反映遗传距离与地理距离间并无明显相关性。 3 cpSSR分子标记研究结果 分析来自青藏高原东缘6个青杨天然群体,所用cpSSR引物中有5对cpSSR引物(CCMP2、CCMP5、SCUO01、SCU03、SCU07)都表现较高的多态性,单个引物检测的片段数都在4以上。5对cpSSR引物共检测片段数26个,组成了12种叶绿体DNA单倍型。各群体的单倍型分布和频率有较大差异,群体单倍型多样性范围为0-0.4926,TS、JZ、PW和SHY群体单倍型多样性高于QHY和LED群体水平。本研究发现,分布在青藏高原东缘的青杨天然群体,群体间不存在共享的单倍型,各群体间存在极大的遗传分化(GST=0.9223)。从青藏高原东缘地区经历的地质历史事件来看,第四纪的冰期气候变迁可能是造成青杨现今遗传结构模式的主要因素之一。根据单倍型在各群体的分布情况,进行青杨群体聚类分析结果,各群体无明显的分组现象,青杨各群体也未呈现任何清晰地理模式。 由于不同分子标记在对群体遗传多样性检测能力与效率上存在差异,所以三种标记检测的青藏高原东缘青杨天然群体遗传多性水平也不尽一致,但在与用同种方法检测其它物种或同一物种不同种源群体比较,三种分子标记方法都揭示了青藏高原东缘青杨天然群体具有中等偏上的遗传多样性水平。结果分析表明,群体间遗传分化极大,这是由于青杨天然群体分布于青藏高原东缘,既有高原又有高山峡谷,由于地理和空间上大尺度的隔离和地形地貌复杂导致了基因流物理上的阻隔。三种分子标记研究结果经Mantel分析检测,遗传距离与地理距离之间都无明显相关性。较为一致的解释是,青杨分布区域地理和空间上大尺度的隔离和和地形地貌复杂导致群体之间不存在均匀扩散现象,另外各群体在不同的选择压力下,经历各自独立的进化历程,这些都可能导致群体间遗传距离与地理距离的不相关。 The wide geographical and climatic distribution of P. cathayana Rehd. indicates that there is a large amount of genetic diversity available, which can be exploited for conservation, breeding programs and afforestation schemes. The results are as follows: 1 Research results of AFLP genetic diversity In present study, genetic diversity was evaluated in the natural populations of P. cathayana originating from southern and eastern edge of the Qinghai-Tibetan Plateau of China by means of AFLP markers. For four primer combinations, a total of 175 bands were obtained, of which 173 (98.9%) were polymorphic. Six natural populations of P. cathayana possessed different levels of genetic diversity, high level of genetic differentiation existed among populations (GST=0.489) of P. cathayana. Individuals cluster and PCO analysis based on Jaccard’s similarity coefficient also showed evident population genetic structure with high level population genetic differentiation. The long evolutionary process coupled with genetic drift within populations, rather than contemporary gene flow, are the major forces shaping genetic structure of P. cathayana populations. Moreover, there is no correspondence between geographical and genetic distances in the populations of P. cathayana, seldom gene exchange among populations and different selection pressures may be the causes. Our finding of different levels of genetic diversity within population and high level of genetic differentiation among populations provided promising condition for further breeding or conservation programs. 2 Research results of SSR genetic diversity In this study, the genetic diversity of P. cathayana was investigated using microsatellite markers. In a total of 150 individuals collected from six natural populations in the southeastern part of the Qinghai-Tibetan Plateau in China, a high level of microsatellite polymorphism was detected. At the seven investigated microsatellite loci, the number of alleles per locus ranged from 5 to 16, with a mean of 11.3, the observed heterozygosities across populations ranged from 0.408 to 0.986, with a mean of 0.792, and the expected heterozygosities across populations ranged from 0.511 to 0.891, with a mean of 0.802. The proportion of genetic differentiation among populations accounted for 37.3% of the whole genetic diversity. The presence of such a high level of genetic diversity could be attributed to the features of the species and the habitats where the sampled populations occur: The southeastern part of the Qinghai-Tibetan Plateau is regarded as the natural distribution and variation center of the genus Populus in China. Variation in environmental conditions and selection pressures in different populations, and topographic dispersal barriers could be factors associated with the high level of genetic differentiation found among populations. The populations possessed significant heterozygosity excesses, which may be due to extensive population mixing at the local scale. The cluster analysis showed that the populations are not strictly grouped according to their geographic distances but the habitat characteristics also influence the divergence pattern. In addition, we suggest that population SHY should be regarded as an ecologically divergent species of P. cathayana. 3 Research results of cpSSR genetic diversity Genetic diversity of six natural populations of P. cathayana originating from the southeastern part of the Qinghai-Tibetan Plateau in China was studied by use of cpSSR markers. Based on 5 pairs of polymorphic primers screened from 12 pairs of primers, twenty-six different length fragments and twelve different kinds of haplotypes were reduced in 143 samples. There were significant variant haplotypes among the populations.There were no shared haplotypes found among populations, analysis of molecular variance indicated that a high proportion of the total genetic variance was attributable to variations among populations (92.23%). The pattern of genetic structure which is associated with spatial separation, variation in environmental conditions and selection pressures in different populations, is also the result of geological historical factor. A molecular phylogenetic tree based on the 12 haplotypes showed that the populations are not strictly grouped according to their geographic distances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

西南地区在我国的经济发展和生态环境建设中占重要地位,但也是我国生态环境最脆弱的地区之一,生态系统退化,生态功能减弱,严重制约着西南林业的可持续经营与发展。本项目采用DNA 分子标记SSR 研究不同生境条件下粗枝云杉群体的遗传变异及其时空分布格局,考察遗传变异与复杂的山地生态环境间的潜在联系,系统地揭示粗枝云杉天然群体与环境系统相互作用的生态适应与分子进化机制。粗枝云杉适应性强,生长迅速,在植树造林和工业用材方面占有重要地位,研究成果可为中国西南部亚高山天然林的可持续经营及退化生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. SSR 位点变异丰富,等位基因频率的分布格局多样。7 个SSR 标记全是多态位点,每位点的等位基因数变化范围为13~24,平均为19.9 个。SSR 位点的等位基因片段长度范围变化较大。73.1%的等位基因变异遵循逐步突变模型(SSM)而发生1 个重复基元的变化,22.3%和4.6%的变异分别按两阶段突变模型(TMP)发生1 个重复基元以上的变化和在SSR 位点侧翼区发生1 个碱基变化的插入-删除事件。 2. 粗枝云杉拥有中等偏高水平的遗传多样性和相对大的群体间遗传分化。通过分析代表10 个群体的250 个个体在7 个SSR位点的变化,调查了源自中国西南山区的粗枝云杉的微卫星变异。相当高的遗传多样性和强烈的群体分化发生在粗枝云杉中, 其群体平均Nei's 期望杂合度为0.707 , 群体间遗传距离为0.121~0.224(FST)和0.100~0.537(RST)。然而,群体间遗传距离与地理距离之间无相关性,从而排除了简单的距离分离模式并暗示迁移不是影响粗枝云杉遗传变异格局的主要因素。事实上,使用私有等位基因估算的基因流数量非常低,仅等于0.753。等位基因置换检验(Allele permutation tests)揭示逐步突变及遗传漂变都对群体间分化有贡献。另外,在多数位点检测到显著的群体间遗传差异,这个结果说明自然选择,假设通过环境压力,是引起粗枝云杉微地理分化的主要因素之一。根据SSR基因型,250 个粗枝云杉个体的70%被正确地归类入其各自的来源群体,结果表明微卫星(SSR)对区分来自中国不同生态地理位点的粗枝云杉基因型是有效的。 3. 在SSR、RAPD 和AFLP 位点,显著的群体间遗传结构被发现的,但三种标记间遗传分化程度和群体遗传关系有差异。利用来自10 个群体的247 个个体,我们报告了关于样本粗枝云杉群体间遗传关系的总体看法。根据各自对评价遗传关系的信息能力和适用性,SSR、RAPD 和AFLP 标记被选用,三种技术非常有效地区别这些基因型。使用的SSR、RAPD 和AFLP 标记分别估计平均Dice 相似性系数。Mantel 检验产生显著但相对低的共表型适合度(RAPD = 0.63£AFLP = 0.60和SSR = 0.75)。比较三种标记系统,RAPD 和AFLP 共表型指数相对高地相关(r =0.59),而RAPD 和SSR 及SSR 和AFLP 之间的相关系数分别是0.53 和0.35。所有系统树,包括不同标记资料结合获得的系统树,反映了多数群体依据它们的地理条件而成某种特定关系。结果暗示单个或结合标记系统能用来深入洞察粗枝云杉遗传研究,并且不同标记系统合并资料能提供更可靠的信息。 Southwestern region plays an important role in economic developmentand ecological construction in China. Yet, it is also one of the weak regionsof ecological environment in China with degraded ecosystem and imperfectfunction, which restricts the sustaining management and development ofsouthwestern forestry. The genetic variation and spatial distribution patternof P. asperata populations originating from different habitats wereinvestigated using SSR molecular markers in this study. The correlationsbetween genetic variation and ecological and environmental conditionswere detected, and the interaction between P. asperata populations andenvironmental system and the mechanism of ecological adaption -molecular evolution were revealed. Given the significant ecological andeconomic roles of the fast-growing and wide-adaptive species in reforestation and production of pulp wood and timber, the study couldprovide a strong theoretical evidence and scientific direction for thesustaining management of subalpine natural forest, and the afforestationand rehabilitation of degraded ecosystem. The results are as follows: 1. The genetic variation at SSR loci was abundant and the distributionof allelic frequencies was uneven. All seven loci were polymorphic, and thenumber of alleles per locus varied from 13 to 24 with a mean valueequaling 19.9. The allele sizes at SSR loci were found to vary widely.73.1% of allelic variation followed stepwise mutation model (SSM) whichresults increase or decrease by one repeat type, and 22.3% and 4.6% wereresulted from two-phase mutation model (TMP) with allele size varying bymore than one repeat type and from insertion-deletion events in theflanking regions at SSR loci with a single basepair changing, respectively. 2. P. asperata possessed a moderate to high level of genetic diversityand considerable genetic differentiation. Microsatellite variation of P.asperata. originating from the mountains of southwestern China wasinvestigated by analyzing variation at seven SSR loci in 250 individualsrepresenting ten populations. A fair degree of genetic diversity and strongpopulation subdivision occurred with the mean gene diversity (H) of 0.707,and genetic distances among populations varying between 0.121 and 0.224(FST) and between 0.100 and 0.537 (RST). However, inter-populationgenetic distances showed no correlation with geographic distances between the population sites. This ruled out a simple isolation by distance modeland suggested that migration does not have a great impact. In fact, theamount of gene flow, detected using private alleles, was very low, equalingonly 0.753. Allele permutation tests revealed that stepwise-like mutations,coupled with genetic drift, could contribute to population differentiation.Moreover, significant genetic differences between populations weredetected at most loci. The results indicate that natural selection, presumablythrough environmental stress, may be one of the main factors causingmicro-geographical differentiation in the genetic structure of P. asperata.Based on SSR genotypes, 70% of the 250 individuals were correctlyclassified into their sites of origin. This suggests that microsatellites (SSRs) are effective in distinguishing genotypes of P. asperata originating fromdiverse eco-geographical sites in China. 3. Using a set of 247 individuals from ten P. asperata populations wereport an overview on the genetic relationship among the sampled P.asperata populations. RAPD, AFLP and SSR were used in terms of theirinformativeness and applicability for evaluate relationship and all threetechniques discriminated the genotypes very effectively. Mean Dicesimilarities coefficient were estimated using RAPD, AFLP and SSR,respectively. The Mantel test resulted in a significant but relatively low fit(RAPD = 0.63, AFLP = 0.60 and SSR = 0.75) of cophenetic values.Comparing the three marker systems to each other, RAPD and AFLP cophenetic indices were highly correlated (r = 0.59), while correlationcoefficient between RAPD and SSR was r = 0.53 and between SSR andAFLP was r = 0.35. For all markers a relatively high similarity indendrogram topologies was obtained although some differences wereobserved. All the dendrograms, including that obtained by the combineduse of all the marker data, reflect some relationships for most of thepopulations according to their geographic conditions. The results indicatethat single or combined marker system could be used to insight into geneticstudy in P. asperata and the combined data of different marker systems canprovide more reliable information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

中国沙棘是一种雌雄异株、风媒传粉的灌木或乔木,在中国西南的卧龙自然保护区有广泛的分布。本研究以采集于四川卧龙自然保护区5 个海拔(1800 m、2200 m、2600 m、3000 m、3400 m)梯度的中国沙棘天然群体为材料,以ISSR 和AFLP 标记技术研究其遗传多样性水平及其遗传结构,旨在了解卧龙地区中国沙棘天然群体的遗传多样性水平以及遗传多样性在群体间、群体内以及雌雄亚群体间的分布和特征,为中国沙棘树种的遗传改良及种质资源保存提供遗传研究背景与实验依据。同时探讨ISSR、AFLP 和RAPD三种标记对中国沙棘天然群体的遗传变异水平和群体间遗传结构的评估能力和各自的优缺点。研究得出以下主要结论: 1. ISSR和AFLP分析都表明卧龙自然保护区的中国沙棘群体拥有较高的遗传变异水平(h = 0.249,HT = 0.305)。出现这种结果的主要原因可能与卧龙自然保护区多变的气候条件和生境的异质度大有关。 2. ISSR 和AFLP 都揭示出卧龙自然保护区中国沙棘群体的遗传多样性随着海拔的增加发生显著的变化,表现为中海拔群体(2200 m 和2600 m)比高海拔群体(3000 m 和3400 m)和低海拔群体(1800 m)有更高的遗传多样性的趋势。出现这种趋势的可能解释是低海拔群体处在相对高温和相对干旱的环境,高海拔群体受到低温和紫外线胁迫,而中海拔群体存在中国沙棘生长的适宜环境。 3. ISSR 和AFLP 分析都表明:卧龙自然保护区中国沙棘的遗传结构遵循分布范围广、交配系统以异交为主的木本植物的通常模式,即大多数的遗传变异存在于群体内,只有少部分的遗传变异存在于群体间。 4. 经Mantel 检测表明,卧龙自然保护区中国沙棘群体间的海拔距离和对应遗传距离之间存在显著的正相关关系,即随着垂直海拔距离的增加,群体间的遗传距离也随之增加。Mantel 检测结果以及聚类分析将卧龙自然保护区5 个不同海拔的中国沙棘群体分为低、中、高海拔群体三组的研究结果都表明,海拔很可能是限制群体间基因交流的主要因素。 5. ISSR 分析发现同一海拔的雌雄亚群体首先聚类的研究结果表明,同一海拔的雌雄亚群体在遗传上最相似。方差分析结果表明只有3.8%的总遗传变异存在于雌雄亚群体间,这可能与雌雄植株间的交配和遗传物质的混合有关。 6. ISSR、AFLP 和RAPD 分析都表明卧龙自然保护区不同海拔的中国沙棘天然群体的遗传多样性水平较高。它们的分析结果估算得到的Nei's 平均基因多样度(h)分别为0.249、0.214 和0.170。从该结果可以看出ISSR 和AFLP 比RAPD 检测到更多的遗传多态性,这很可能是不同标记检测的基因组的位点不同所致。 7. 依据对不同标记系统的比较分析,认为ISSR、AFLP 和RAPD 三种分子标记系统都能成功地用于调查卧龙自然保护区不同海拔的中国沙棘群体的遗传变异水平及遗传变异结构,提供关于中国沙棘天然群体多态性水平和遗传变异分布的有用信息。在三者中,AFLP 具有最高效能指数和标记指数,在确定种间分类关系或鉴别个体方面是一种比较理想的标记。 Hippophae rhamnoides subsp. sinensis, a dioecious and deciduous shrub species,occupies a wide range of habitats in the Wolong Nature Reserve, Southwest China. Ourpresent study investigated the pattern of genetic variation and differentiation among fivenatural populations of H. rhamnoides subsp. sinensis, occurring along an altitudinal gradientthat varied from 1,800 to 3,400 m above sea level in the Wolong Natural Reserve, by usingISSR and AFLP markers to guide its genetic improvement and germplasm conservation. And,comparative study of ISSR, AFLP and RAPD was performed to detect their capacity toestimating the level and pattern of genetic variation occurring among the five elevationpopulations of H. rhamnoides subsp. sinensis, and to discuss their application to the study onplant genetics. The results were list following: 1. The ISSR and AFLP analysis conducted for the H. rhamnoides subsp. sinensispopulations located in the Wolong Natural Reserve of China revealed the presence of highlevels of genetic variation (h = 0.249, HT = 0.305). Besides such features as relatively widedistribution, dominantly outcrossing mating system, and effective seed dispersal by small animals and birds, it is sometimes argued that hard climatic conditions and heterogeneous habitats may also contribute to high levels of diversity. 2. Genetic diversity of H. rhamnoides subsp. sinensis populations was found to varysignificantly with changing elevation, showing a trend that mid-elevation populations (2,200m and 2,600 m) were genetically more diverse than both low-elevation (1,800 m) andhigh-elevation populations (3,000 m and 3,400 m). H. rhamnoides subsp. sinensis is thoughtto be stressed by drought and high temperature at low elevations, and by low temperature athigh elevations. The high genetic variability present in the mid-elevation populations of H.rhamnoides subsp. sinensis is assumed to be related to a greater plant density in the middlealtitudinal zone, where favorable ecological conditions permit its continuous distributioncovering the zone from 2,200 m to 2,600 m above sea level. 3. The genetic structure of H. rhamnoides subsp. sinensis revealed by ISSRs andAFLPs followed the general pattern detected in woody species with widespread distributionsand outcrossing mating systems. Such plants possess more genetic diversity withinpopulations and less variation among populations than species with other combinations oftraits. 4. In the present study, Mantel tests showed positive correlations between altitudinaldistances and genetic distances among populations or subpopulations. The observedrelationship between altitude and genetic distances, and the result of the cluster analysisincluding populations or male subpopulations and classifying the groups into three altitudeclusters suggest that altitude is a major factor that restricts gene flow between populationsand subpopulations. 5. The analysis of molecular variance showed that only 3.8% of the variability residedbetween female and male subpopulations. Such a very restricted proportion of the totalmolecular variance between female and male subpopulations is due to common sexuality andmixing of genetic material between females and males. 6. The analysis based on ISSRs, AFLPs and RAPDs all revealed relatively high levelsof genetic variation among different altitudinal populations of H. rhamnoides subsp. sinensisin Wolong Natural Reserve of China. Their estimates of mean Nei’s gene diversity is equal to0.249, 0.214 and 0.170 respectively, suggesting the higher capacity of detecting geneticvariation of ISSR and AFLP than RAPD. It might be ascribed to their distinct sensitivity todifferent type of genetic variation. 7. Based on the coparative study on ISSR, AFLP and RAPD, we drew a conclusion thatthey all successfully reveal some useful information concerning the level and pattern ofgenetic vatiation occurring among different elevation populations of H. rhamnoides subsp.sinensis. AFLP is a ideal tool to taxonomic study and individual identification for theirhighest efficiency index and marker index among the three marker systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

沙蜥属(Phrynocephalus)的卵胎生类群主要分布在我国青藏高原,包括南疆沙蜥(P. forsythii)、西藏沙蜥(P. theobaldi)、红尾沙蜥(P. erythrurus)、贵德沙蜥(P. putjatia)和青海沙蜥(P. vlangalii)。其卵胎生生殖方式适应了高寒生境,与青藏高原隆升有关。纵观前人的研究,上述几种卵胎生沙蜥的分类、系统发育关系以及生物地理都还存在疑问。本文研究了分布在若尔盖湿地的青海沙蜥红原亚种(P. v hongyuanensis)以及分布在黄河上游其它地区青海沙蜥种组的地理分布格局,并探讨了其形成机制。 青海沙蜥在黄河上游主要分布于若尔盖湿地以及青海湖周边地区。若尔盖湿地青海沙蜥红原亚种的生境由于沼泽的形成被切割成不连续的斑块,通过遗传分析可以推测这种特殊生境对它们遗传结构的影响。其次,贵德沙蜥、青海沙蜥的青海湖周边各居群以及若尔盖湿地居群之间的系统地理格局还未见报道。因此本文以居群为单位,将它们作为一个复合体,通过系统地理研究,可以了解其种群遗传结构,据此分析相关的地质历史事件对其分布的影响。主要结果如下: 1. 若尔盖湿地青海沙蜥红原亚种的种群遗传结构: 共研究了三个地理单元(红原(HY)、辖曼(XM)、玛曲(MQ))的7个采集点的72个个体。所有ND4-tRNALeu序列比对得到785 bp的片断,定义了9种单倍型。结果显示总的核苷酸多样性较低,单倍型多样性较高。分子变异分析(AMOVA)显示3个单元间差异显著(P<0.01),遗传变异主要存在于地理单元间,占62.61%。除MQ单元,XM各居群与HY居群混杂在一起,单倍型网络图没有显示出单倍型和地理位置的对应关系。XM单元单倍型的不配对分布(Mismatch distribution)为明显左移的单峰,且Fu’s Fs test为负值,表明XM单元可能经历了近期种群扩张,有足够的时间积累单倍型的多态性,还不足以大幅提高核苷酸多样性,这是其单倍型多样性较高和核苷酸多样性较低的原因。MQ单元遗传多样性低而与其他单元显著分化,推测这与3万年前黄河在若尔盖玛曲之间贯通有关。近期沼泽的形成对XMb居群的隔离时间短,使得其遗传多样性低但还不足以形成大的遗传差异。无论黄河的贯通还是沼泽的形成其隔离形成的时间都不长,其作用改变了单倍型出现的频率,也出现了一些特有单倍型,但共享单倍型还广泛存在,还不足以使得不同居群之间形成较大的遗传距离。 2. 黄河上游青海沙蜥种组的分布格局与地史过程的关系: 黄河上游青海沙蜥种组包括贵德沙蜥、青海沙蜥指名亚种的青海湖周边各居群、青海沙蜥红原亚种若尔盖湿地居群、以及青海湖以西的部分居群(序列由Genbank下载获得),总计22个居群189个样品。所有ND4-tRNALeu序列比对得到703个位点,定义了39种单倍型。以南疆沙蜥为外群构建的贝叶斯树以及MP法构建的无根树,都分为A、B两大组。其中A包括若尔盖湿地居群以及玛多居群(A1)、青海湖以西的居群和兴海居群(A2)、西藏沙蜥;B包括青海湖以南的居群和天祝居群(B1)、青海湖以东北的居群(B2)。单倍型网络图分别对应了系统发育树上的各支。按照系统发育结果分组进行分子变异分析,得到组间变异占88.63%,各组间差异显著(P=0.000)。种群遗传结构分析得到,A1和B2可能经历了近期的种群扩张,前者扩张时间约为0.105-0.189 Ma B.P.(million years before present),后者为0.057-0.102 Ma B.P.,可能与末次间冰期的气候变暖有关。A2和B1对应的两个地理单元都具有较强的种群遗传结构,较为稳定。 青海沙蜥种组A、B两大支之间遗传距离大,分化明显,分化大约发生在4.29-2.38 Ma B.P.,推测青藏运动的A幕运动后复杂的地形变化可能是它们产生分化的原因。B1和B2分化大约发生在1.73-0.96 Ma B.P.,这与湟水流域构造运动发生的时间相符。在早、中更新世时期,B1支内部各居群可能有交流,中更新世末共和盆地出现的抬升以及河流溯源改道等事件可能是引起这支内部多个单倍型丢失的原因。A1、A2支的分化可能与倒数第三次冰期降临之后气候变冷、阿尼玛卿山的大冰帽有关。 The viviparous group of genus Phrynocephalus is mainly distributed in the Qinghai –Tibetan Plateau, including P. forsythii、P. theobaldi、P. erythrurus、P. putjatia and P. vlangalii. These species are adapted well to the cold clime there, and the origin of this group was the result of a vicariance event associated with the uplifting of the Qinghai -Tibetan Plateau. Although many works have been done, there are still several questions about classification、phylogenetic relationships and the biogeography of this group. The phylogeographic pattern of the P. vlangalii complex on the upper reaches of the Yellow River and the P. v. hongyuanensis in Zoige Wetland were studied in this thesis. On the upper reaches of the Yellow River, P. vlangalii complex are distributed in Zoige Wetland and the southeast and northeast region of Kuku-noor Lake. Because of the forming of the wetland in Zoige, the habitats for sand lizards are divided into many discontinuous ones, and it is necessary to analyze genetic structure in these unique habitats. The phylogeographic patter among P. putjatia、populations of P. vlangalii in the southeast region of Kuku-noor Lake and populations of P. vlangalii in Zoige Wetland hasn’t been studied yet, and the complicated geological events of the Plateau may play an important role in the populations’ diversity and species forming there. So these populations were gathered as a complex, and phylogeographic analysis were used to clarify these doubts. According to the two topics above, this thesis has two parts of results as follows: 1. Three geographic units of P. vlangalii hongyuanensis in Zoige Wetland were defined, and they were Xiaman (XM)、Hongyuan (HY) and Maqu (MQ). 785bp fragments of the mtDNA ND4-tRNAleu were determined from 72 samples and nine haplotypes were identified. As a whole, the nucleotide diversity was low,but the haplotype diversity was high. Analysis of molecular variance (AMOVA) showed that the three units were distinctly different(P<0.01),and 62.61% of the total genetic diversity was attributable to variation among units. There were 3 haplotypes shared among XM and HY,and no geographic clustering was observed except MQ from the TCS network. The results from the mismatch distribution analysis and Fu’s Fs test implied that there might be a recent population expansion in the XM unit, and this may be the reason why XM had a high haplotype diversity but a low nucleotide diversity. We estimate that the MQ and XMb have lower diversities because of some very recent geographic events, such as the formation of the Yellow river’s upriver and the Zoige Wetland. Although they are distinctly different, not enough time has passed for them to have diverged a great genetic distance. 2. 189 samples in 22 populations of P. vlangalii complex were collected, including P. putjatia、populations of P. vlangalii in the southeast and northeast region of Kuku-noor Lake、 populations of P. vlangalii in Zoige Wetland and the data from Genbank. 703bp ND4-tRNALeu sequences identified 39 haplotypes. P. forsythii was selected as outgroup, and both the Bayesian tree and the MP unrooted tree were divided into two groups(A、B). A included populations in Zoige Wetland and Xinghai(A1)、populations in the west of Kuku-noor Lake(A2)、P. theobaldi, and B included populations in the southeast of Kuku-noor Lake and Tianzhu(B1)、populations in the northeast of Kuku-noor Lake(B2). The haplotype network agreed with these groups. AMOVA showed that these five groups were distinctly different(P<0.01), and 88.63% of the total genetic diversity was attributable to variation among groups. There might be recent population expansion in A1 and A2, which corresponded to the dry climate of the last interglacial period. The expansion times were 0.189-0.105 Ma B.P. and 0.102-0.057 Ma B.P., respectively. A2 and B1 had strong genetic structure. The large genetic distance between A and B showed that they had been separated from each other for a long time(about 4.29-2.38 Ma B.P.), and it corresponded to the A phase of Qingzang Movement. The diversity between B1 and B2 at 1.73-0.96 Ma B.P. may be caused by the geological event in Huangshui valley. In early Pleistocene, populations in B1 may have gene flow because of geographic linkage, and later the uplift of the Plateau and the change of river route there made a few haplotypes lost. A1 and A2 were divided into two parts by A’nyemaqen Mountains at 0.66-0.37 Ma B.P., which maybe corresponded to glaciations at about 0.7 Ma B.P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen- and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G(ST) = 0.738, N-ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N-ST > G(ST), P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metagentiana striata is an alpine annual herbaceous plant endemic to the east of the Qinghai-Tibet (Q-T) Plateau and adjacent areas. The phylogeography of M. striata was studied by sequencing the chloroplast DNA (cpDNA) trnS-trnG intergenic spacer. Ten haplotypes were identified from an investigation of 232 individuals of M. striata from 14 populations covering the entire geographical range of this species. The level of differentiation amongst populations was very high (G(ST) = 0.746; N-ST = 0.774) and a significant phylogeographical structure was observed (P < 0.05). An analysis of molecular variance found a high variation amongst populations (76%), with F-ST = 0.762 (highly significant, P < 0.001), indicating that little gene flow occurred amongst the different regions; this was explained by the isolation of populations by high mountains along the Q-T Plateau and adjacent areas (N-m = 0.156). Only one ancestral haplotype (A) was common and widespread throughout the distributional range of M. striata. The populations of the Hengduan Mountains region of the south-eastern Q-T Plateau showed high diversity and uniqueness of haplotypes. It is suggested that this region was the potential refugium of M. striata during the Quaternary glaciation, and that interglacial and postglacial range expansion occurred from this refugium. This scenario was in good agreement with the results of nested clade analysis, which inferred that the current spatial distribution of cpDNA haplotypes and populations resulted from range expansion, together with past allopatric fragmentation events. (c) 2008 The Linnean Society of London.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H (E)) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei's gene diversity (H (E)) from 0.179 to 0.289 and Shannon's indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei's genetic diversity (G (ST) = 0.256) and AMOVA analysis (Phi (st) = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.