32 resultados para Functional differential equations
Resumo:
A perturbation solution is obtained for the local stress-strain fields in an axially cracked cylindrical shell. The tenth-order differential equations are used that take into account the transverse shear deformation. The perturbation of a curvature parameter, λ, is employed, where . The stress intensity factors for finite size cylindrical shells subjected to bending and internal pressure are evaluated. Sufficient accuracy can be obtained without using fine mesh sizes in regions near the crack tip. Also analyzed are the influence of cylinder diameter and shearing stiffness on bulging.
Resumo:
On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213–218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/L 1 (L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 – 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks.
Resumo:
设计了一种新型的体全息光栅透镜,在一块光学平板(体全息记录材料)内可以将输入光束产生横向传输并聚焦,或对输入光点产生横传的准直.它由一束平面波和一束球面波正交入射到光学平板上干涉形成的.研究了该体全息透镜的光栅间距变化情况,为设计和制备体全息光栅透镜及相关器件提供了理论依据.基于两光束耦合波理论,得到了该光栅透镜的耦合波方程,近似计算了该透镜的衍射效率及其达到高衍射效率时透镜的最佳尺寸.最后,讨论了该透镜在集成光学等领域中的应用.
Resumo:
强外加电场与大调制度在光折变效应的研究中已经得到了广泛应用。采用PDECOL算法, 严格求解光折变带输运方程, 得到外加电场时不同调制度下光折变晶体中随时间变化的空间电荷场、载流子浓度, 并讨论了外加电场对它们的影响。通过将物质方程与耦合波方程联立数值求解, 可得到光折变光栅形成过程中两波耦合增益系数以及光束条纹相位的变化。模拟结果表明, 在强外加电场作用下, 两束记录光之间的光强与相位耦合都得到了增强, 而原有的解析式忽视了强外加电场与大调制度对空间电荷场相位耦合的影响, 此时不再适用。同时发现折射率光
Resumo:
A series of novel numerical methods for the exponential models of growth are proposed. Based on these methods, hybrid predictor-corrector methods are constructed. The hybrid numerical methods can increase the accuracy and the computing speed obviously, as well as enlarge the stability domain greatly. (c) 2005 Published by Elsevier Inc.
Resumo:
A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.
Resumo:
A transfer matrix method is presented for the study of electron conduction in a quantum waveguide with soft wall lateral confinement. By transforming the two-dimensional Schrodinger equation into a set of second order ordinary differential equations, the total transfer matrix is obtained and the scattering probability amplitudes are calculated. The proposed method is applied to the evaluation of the electron transmission in two types of cavity structure with finite-height square-well confinement. The results obtained by our method, which are found to be in excellent agreement with those from another transfer matrix method, suggest that the infinite square-well potential is a good approximation to finite-height square-well confinement for electrons propagating in the ground transverse mode, but softening of the walls has an obvious effect on the electron transmission and mode-mixing for propagating in the excited transverse mode. (C) 1996 American Institute of Physics.
Resumo:
An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We investigate solitary excitations in a model of a one-dimensional antiferromagnet including a single-ion anisotropy and a Dzyaloshinsky-Moriya antisymmetric exchange interaction term. We employ the Holstein-Primakoff transformation, the coherent state ansatz and the time variational principle. We obtain two partial differential equations of motion by using the method of multiple scales and applying perturbation theory. By so doing, we show that the motion of the coherent amplitude must satisfy the nonlinear Schrodinger equation. We give the single-soliton solution.
Resumo:
The general forms of the conservation of momentum, temperature and potential vorticity of coastal ocean are obtained in the x-z plane for the nonlinear ocean circulation of Boussinesq fluid, and a elliptic type partial differential equations of second order are derived. Solution of the partial differential equations are obtained under the conditions that the fluid moves along the topography. The numerical results show that there exist both upwelling and downwelling along coastline that mainly depends on the large scale ocean condition. Numerically results of the upwelling (downwelling), coastal jet and temperature front zone are favorable to the observations.
Resumo:
In consideration of the problem on the boundary condition of nonlinear free water wave, coordinate transform is used to handle the free boundary. Supposing the solution form be the traveling wave, the ordinary differential equations of the one-order autonomous system with two variables are caused, then expanding the nonlinear terms at the equilibrium point with the Taylor expansion, we obtained the solution to traveling wave. The linear approximate equation near the equilibrium point is the small amplitude wave. A new nonlinear periodic traveling wave and nonlinear dispersion relation are shown when expanding to the second-order terms. A conclusion that the expansion of dispersion relation does not contain any odd-power terms of wave steepness and because of the nonlinear effort an oscillate structure is produced in the vertical direction is drawn.
Resumo:
具有三维运动能力和独特的节律运动方式,使生物蛇能在复杂的地形环境中生存.大多数动物节律运动是由中央模式发生器(Centralpatterngenerator,CPG)控制的.以此为理论依据,首次以循环抑制建模机理构建蛇形机器人组合关节运动控制的CPG模型.证明该模型是节律输出型CPG中微分方程维数最少的.采用单向激励方式连接该类CPG构建蛇形机器人三维运动神经网络控制体系,给出该CPG网络产生振荡输出的必要条件.应用蛇形机器人动力学模型仿真得到控制三维运动的CPG神经网络参数,利用该CPG网络的输出使“勘查者”成功实现三维运动.该结果为建立未探明的生物蛇神经网络模型提供了一种全新的方法.