146 resultados para Fredholm Integral Equation
Resumo:
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
本文研究粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的稳态散射。相对于已有广泛研究的弹性材料裂纹瞬态响应和稳态散射问题,本文的研究有三个突出特点:1)粘弹性材料;2)界面裂纹;3)广义平面波入射。粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的散射尚无开展研究,本文在弹性材料相应问题的研究基础上,首先开展了这一问题的研究。对于冲击载荷下粘弹性界面裂纹的瞬态响应问题,利用Laplace积分变换方法,将粘弹性材料卷积型本构方程转化为Laplace变换域内的代数型本构方程,从而可以在Laplace变换域内象处理弹性材料的冲击响应一样,将相应的混合边值问题归结为关于裂纹张开位移COD的对偶积分方程,并进一步引入裂纹位错密度函数CDD (Crack Dislocation Density),将对偶积分方程化成关于CDD的奇异积分方程(SIE)。用数值方法求解奇异积分方程得到变换域内的动应力强度因子数值解,最后利用Laplace积分逆变换数值方法得到时间域内的动应力强度因子的时间响应。理论分析考虑了两种裂纹模型,即Griffith界面裂纹和柱面圆弧型界面裂纹。考虑的载荷包括反平面冲击载荷和平面冲击载荷。对于平面冲击载荷,通过对裂尖应力场的奇性分析,首次发现粘弹性界面裂纹裂尖动应力场奇性指数不是常数0.5,而是与震荡指数一样依赖材料参数。针对反平面冲击载荷给出了一个算例,计算了裂尖动应力强度因子的时间响应,并与弹性材料的结果作了比较,发现粘弹性效应的影响不仅使过冲击峰值降低,而且使峰值点后移。粘性效应较大时,过冲击现象甚至不出现。关于粘弹性界面裂纹对广东省义平面波的散射问题,首先研究广义平面波在无裂纹存在的理想界面的反射和透射,再研究由于界面裂纹的存在而产生的附加散射场。利用粘弹性材料的复模量理论,可将粘弹性材料的卷积型相构方程化成频率域内的代数型本构方程。类似弹性平面波的处理,在频率域内将问题最终归结为关于裂纹位错密度CDD的奇异积分方程。数值方法求解奇异积分方程即可得到频率域内的散射场,并进而得到裂尖动应力强度因子和远场位移型函数和散射截面。理论分析考虑了两种裂纹模型:Griffith界面裂纹和柱面圆弧型界面裂纹。研究的入射波有广义的SH波和P波。对于广义平面P波入射的情况,通过对裂尖应力场的奇性分析,同样发现粘弹性界面裂纹裂尖动应力场奇性指数不地常数0.5,而是与震荡指数一样依赖于材料参数。对柱面裂纹散射远场的渐近分析,发现远场位移和应力除含有几何衰减因子外,都含有一个材料衰减速因子。散射截面由于材料衰减因子的存在也成为依赖散射半径的量。为了使散射截面仍有意义,文中提出一种修正办法。对Griffith界面裂纹,给出了一个广义平面SH波入射的算例;对柱面界面裂纹,给出了一个广义平面P波入射的算例。计算了不同入射角和入射频率下裂纹的张开位移和动就应力强度因子,并分析了其依赖关系。求解奇异积分方程的数值方法和Laplace积分逆变换数值方法是本文的基本数值方法。本文对这两种方法作了大量的调研和系统的研究。在对比分析的基础上,对现有的各种方法从原理,适用范围,计数效率,优势及特点进行了归纳总结。并尝试了奇异积分方程的最新数值方法--分片连续函数法,证实了其适用性和方便性.
Resumo:
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Resumo:
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.
Resumo:
With the aid of Sanchez-Lacombe lattice fluid theory (SLLFT), the phase diagrams were calculated for the system cyclohexane (CH)/polystyrene (PS) with different molecular weights at different pressures. The experimental data is in reasonable agreement with SLLFT calculations. The total Gibbs interaction energy, g*(12) for different molecular weights PS at different pressures was expressed, by means of a universal relationship, as g(12)* =f(12)* + (P - P-0) nu*(12) demixing curves were then calculated at fixed (near critical) compositions of CH and PS systems for different molecular weights. The pressures of optimum miscibility obtained from the Gibbs interaction energy are close to those measured by Wolf and coworkers. Furthermore, a reasonable explanation was given for the earlier observation of Saeki et al., i.e., the phase separation temperatures of the present system increase with the increase of pressure for the low molecular weight of the polymer whereas they decrease for the higher molecular weight polymers. The effects of molecular weight, pressure, temperature and composition on the Flory Huggins interaction parameter can be described by a general equation resulting from fitting the interaction parameters by means of Sanchez-Lacombe lattice fluid theory.
Resumo:
With the development of both seismic theory and computer technology, numerical modeling technology of seismic wave has achieved great advancement during the past half century. The current methods under development include finite differentiation method (FDM), finite element method (FEM), pseudospectral method (PSM), integral equation method (IEM) and spectral element method (SEM). They exert their very important roles in every corner of seismology and seismic prospecting. Large quantity of researches towards spectral element method in the end of last century bring this method to a new era, which results in perfect solution of many difficult problems. However, parts of posterior works such as seismic migration and inversion which base on spectral element method have never been studied widely at least up to the present whereas are of importance to seismic imaging and seismic wave propagation. Based on previous work, this paper uses spectral element method to investigate the characteristics and laws of the seismic wave propagation in isotropic and anisotropic media. By thoroughly studying this high-accuracy method, we implement a kind of reverse-time pre- and post-stack migration based on SEM. In order to verify the validity of the SEM method, we have simulated the propagation of seismic wave in several different models. The simulation results show that: (1) spectral element method can be used to model any complex models and the computational results are comparable with the expected results and the analytic results; (2) the optimum accuracy can be achieved when the rank is between 4 and 9. When it is below 4, the dispersion may occur; and when it is above 9, the time step-length will be changed accordingly with the reducing space step-length in order to keep the computation stability. This will exponentially increase the computation time and at the same time the memory even if simulating the same media. This paper also applies explosive reflection surface imaging technology, time constancy principle of wave-filed extrapolation and least travetime raytracing technology of surface source to SEM pre- and post-stack migration of isotropic and anisotropic media. All imaging results derived by the above methods agree well with the real geological models and the position of interface and inflexions can also return to their right location well. This indicates that the method proposed in this paper is a kind of technology with high accuracy and robust stability. It can serve as an alternative method in real seismic data processing. All these work can boost the development of high-accuracy seismic imaging, and therefore have significant inference value.
Resumo:
In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.
Resumo:
To improve the efficiency of boundary-volume integral equation technique, this paper is involved in the approximate solutions of boundary-volume integral equation technique. Firstly, based on different interpretations of the self-interaction and extrapolation operators of the resulting boundary integral equation matrix, two different hybrid BEM+Born series modeling schemes are formulated and validated through comparisons with the full-waveform BE numerical solutions for wave propagation simulation in a semicircular alluvial valley and a complex fault model respectively. Numerical experiments indicate that both the BEM+Born series modeling schemes are suitable for complex geological structures and significantly improve computational efficiency especially for the cases of high frequencies and multisource seismic survey. Then boundary-volume integral equation technique is illuminated in detail and verified by modeling wave propagation in complex media. Furthermore, the first-order and second-order Born approximate solutions for the volume-scattering waves are studied and quantified by numerical simulation in different random medium models. Finally, preconditioning generalized minimal residual method is applied to solve boundary-volume integral equation and compared with Gaussian elimination method. Numerical experiments indicate this method makes the calculations more efficient.
Resumo:
In terms of the quantitative causal principle, this paper obtains a general variational principle, gives unified expressions of the general, Hamilton, Voss, Holder, Maupertuis-Lagrange variational principles of integral style, the invariant quantities of the general, Voss, Holder, Maupertuis-Lagrange variational principles are given, finally the Noether conservation charges of the general, Voss, Holder, Maupertuis-Lagrange variational principles axe deduced, and the intrinsic relations among the invariant quantities and the Noether conservation charges of all the integral variational principles axe achieved.
Resumo:
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.