51 resultados para Francesco II Borbone, King of the Two Sicilies, 1836-1894.
Resumo:
Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.
Resumo:
Based on the transmission electron micrographs of nacre, the existence of mineral bridges in the organic matrix interface is confirmed. It is proposed that the microarchitecture of nacre should be considered as a "brick-bridge-mortar" (BBM) arrangement rather than traditional "brick and mortar" (BM) one. Experiments and analyses indicate that the mineral bridges effectively affect the strength and toughness of the interfaces in nacre. Comparison with a laminated composite with BM structure, SiC/BN, shows that the pattern of the crack extension and the toughening mechanism of the two materials are different. This reveals that the mineral bridges play a key role in the toughening mechanisms of nacre, which gives a conceptual guidance in material synthesis.
Resumo:
A study of the two-dimensional flow pattern of particles in consolidation process under explosive-implosive shock waves has been performed to further understand the mechanism of shock-wave consolidation of metal powder, in which bunched low-carbon steel wires were used instead of powder. Pressure in the compact ranges from 6 to 30 GPa. Some wires were electroplated with brass, some pickled. By this means, the flow pattern at particle surfaces was observed. The interparticle bonding and microstructure have been investigated systematically for the consolidated specimens by means of optical and electron microscopy, as well as by microhardness. The experimental results presented here are qualitatively consistent with Williamson's numerical simulation result when particle arrangement is close packed, but yield more extensive information. The effect of surface condition of particle on consolidation quality was also studied in order to explore ways of increasing the strength of the compacts. Based on these experiments, a physical model for metal powder shock consolidation has been established.
Resumo:
The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past
Resumo:
The 70% EtOH extract of Polygonum cuspidatum showed inhibitory action against HIV-1-induced syncytium formation at non-cytotoxic concentrations in vitro with a 50% effective concentration (EC50) of 13.94 +/- 3.41 mu g/mL. Through bioactivity-guided fractionation, 20 phenolic compounds, including eight stilbenoids, were isolated from the roots of Polygonum cuspidatum, and their anti-HIV-1 activities were evaluated. Results showed that compounds 1, 13, 14, and 16 demonstrated fairly strong antiviral activity against HIV-1-induced cytopathic effects in C8166 lymphocytes at non-cytotoxic concentrations, with EC50 values of 4.37 +/- 1.96 mu g/mL, 19.97 +/- 5.09, 14.4 +/- 1.34 mu g/mL, and 11.29 +/- 6.26 mu g/mL and therapeutic index (TI) values of 8.12, > 10.02, > 13.89, and > 17.71, respectively. Other compounds showed either weak or no effects. Compound 6 also showed weak inhibition (153.42 +/- 19.25 mu g/mL); however, it possesses very good water solubility and showed almost no cytotoxicity (> 2000 mu g/mL), therefore achieving a fairly good TI (13.04). The activities of the two compounds (3 and 18) from Polygonum multiflorum were also assayed. The relationship between molecular structures and their bioactivities was also discussed.
Resumo:
In this paper the habitat structure and ecology of Presbytis francoisi and Presbytis leucocephalus are compared. Observations were made of the two langur species in areas of southwest Guangxi province in which the langurs occur but are not sympatric. The results showed that the habitat of P. leucocephalus differs from that of P. francoisi and that the habitat in western areas was different from that in eastern areas in terms of vegetation and other criteria. P. francoisi was limited in its distribution to localities at higher altitudes, in contrast to P. leucocephalus. This may be due to human activities such as crop cultivation and logging. With respect to its activity pattern, P. leucocephalus spent 51.8% of its day in the trees and 48.2% on the rocky substrate. The results of this study suggest that Presbytis may best be regarded as a semiarboreal form.
Resumo:
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasite Clonorchis sinensis have been cloned and their gene products functionally characterized. Genes Cu/ZnSOD and MnSOD encode proteins of 16 kDa and 25.4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73.7% and 75.4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ ZnSOD and MnSOD, both of which were functionally expressed in Escherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that both C. sinensis Cu/ZnSOD and MnSOD should be antigenic for humans, and both, especially the C. sinensis MnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in the C. sinensis antioxidant system.
Resumo:
Anabaena strains expressing the binary toxin genes of Bacillus sphaericus produce high larvicidal activity with living cells. Western blot analysis showed that the 51-kDa and 42-kDa toxin proteins were stable in Anabaena. When a DNA fragment upstream of the 51-kDa protein gene was deleted, the toxicity was reduced by over a hundred-fold, whereas deletions at the coding regions showed that the cooperation of the two proteins expressed in Anabaena is essential for the larvicidal activity. Outdoor tests showed that the genetically altered Anabaena could keep containers with natural water from being inhabited by Culex larvae for over 2 months.
Resumo:
The Rashba spin splitting of the minibands of coupled InAs/GaAs pyramid quantum dots is investigated using the k center dot p method and valence force field model. The Rashba splitting of the two dimensional miniband in the lateral directions is found due to the structure inversion asymmetry in the vertical direction while the miniband in the vertical direction has no Rashba spin splitting. As the space between dots increases, the Rashba coefficients decrease and the conduction-band effective mass increases. This Rashba spin splitting of the minibands will significantly affect the spin transport properties between quantum dots. (C) 2008 American Institute of Physics.
Resumo:
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference DeltaE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.
Resumo:
Complex Fourier transformation (CFT) has been employed to analyse contactless electroreflectance (CER) spectra from an undoped-n(+) GaAs structure with various ac modulations and dc bias voltages. The CFT spectra of CER have been compared with those of photoreflectance (PR). It has been found that the CER non-flat modulation is between the built-in electric field and a larger electric field which increases with the modulation voltage. The result has been explained by the screening of the applied modulation electric field in one of the two half modulation cycles and the trapping of electrons in surface states in the other half modulation cycle. The dc bias does not change the CER spectra, hence their CFT spectra. This is because of the screening of the applied dc bias electric field.
Resumo:
Four well-resolved peaks with very narrow linewidths were found in the D-band and G'-band features of double-walled carbon nanotubes (DWNTs). This fact implies the occurrence of additional van Hove singularities (vHSs) in the joint density of states (JDOS) of DWNTs, which is consistent with theoretical calculations. According to their peak frequencies and theoretical analysis, the two outer peaks can be deduced to originate from a strong coupling between the two constituent tubes of commensurate DWNTs and the two inner peaks were curvature-related and assigned to originate from the two tubes with a weak coupling. This observation and elucidation constitute the first Raman evidence for atomic correlation and the resulting electronic structure change of the two constituent tubes in DWNTs. This result opens the possibility of predicting and modifying the electronic properties of DWNTs for their electronic applications.
Resumo:
We have studied the equilibrium and nonequilibrium electronic transports through a double quantum dot coupled to leads in a symmetrical parallel configuration in the presence of both the inter- and the intradot Coulomb interactions. The influences of the interdot interaction and the difference between dot levels on the local density of states (LDOS) and the differential conductance are paid special attention. We find an interesting zero-bias maximum of the differential conductance induced by the interdot interaction, which can be interpreted in terms of the LDOS of the two dots. Due to the presence of the interdot interaction, the LDOS peaks around the dot levels epsilon(i) are split, and as a result, the most active energy level which supports the transport is shifted near to the Fermi level of the leads in the equilibrium situation. (c) 2006 American Institute of Physics.
Resumo:
Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.
Resumo:
A new type of interferometer, the moving-optical-wedge interferometer, is presented, and its principle and properties are studied. The novel interferometer consists of one beam splitter, two flat fixed mirrors, two fixed compensating plates, one fixed optical wedge, and one moving optical wedge. The optical path difference (OPD) as a function of the displacement of the moving optical wedge from the zero path difference position is accomplished by the straight reciprocating motion of the moving optical wedge. A large physical shift of the moving optical wedge corresponds to a very short OPD value of the new interferometer if the values of the wedge angle and the refractive index of the two optical wedges are given properly. The new interferometer is not so sensitive to the velocity variation of the moving optical wedge and the mechanical disturbances compared with the Michelson interferometer, and it is very applicable to low-spectral-resolution application for any wavenumber region from the far infrared down to the ultraviolet. (C) 2008 Optical Society of America.