27 resultados para Foods -- Drying


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dry/wet spinning process, asymmetric cellulose hollow fiber membranes (CHFM) were prepared from a dope composed of cellulose/N-methylmorpholine-N-oxide/water. The formation mechanism for the finger-like macrovoids at the inner portion of as-spun fibers was explained. Naturally drying and three solvent exchange drying methods were tried to investigate their influence on morphology and properties of CHFM. It was found that the ethanol-hexane exchange drying was an appropriate method to minimize morphology change of the as-spun CHFM, whereas the naturally drying caused the greatest shrinkage of the fibers that made the porous membrane become dense. The result, CHFM from ethanol-hexane exchange drying performed the highest gas permeation rate but gas permeation of the naturally dried membrane could not be detectable. The resultant CHFM from the ethanol-hexane exchange drying also showed acceptable, mechanical properties, thus it was proposed to be an appropriate method for gas separation purpose. The experimental results supported the proposed drying mechanism of CHFM. The free water would evaporate or be replaced by a solvent that subsequently would evaporate but the bonded water would remain in the membrane. What dominated the changes of membrane morphology during drying should be. the molecular affinities of cellulose-water, water-solvent and solvent-solvent. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaMnxAl12-xO19 catalysts were prepared from NH4OH and metal nitrates solutions. Supercritical drying (SCD) and conventional oven drying (CD) methods were used to extract the water in the hydrogel. The effects of drying methods on properties of the catalysts were investigated by means of TEM, N-2-adsorption, thermogravimetry (TG)-differential thermal analysis (DTA) and X-ray diffraction. SCD method is beneficial to maintain high surface area and improving catalytic activity for methane combustion of the catalyst. The specific surface area and pore volume of LaMn1Al11O19 catalyst prepared by SCD method are 28 m(2)/g and 0.23 cm(3)/g, respectively, and the ignition of methane could be carried out at 450degreesC. However, those of the CD catalyst prepared from the same precursor are 15 m(2)/g, 0.11 cm(3)/g and 530 degreesC, respectively. Suitable Mn content (0 less than or equal to x less than or equal to 2) could promote the formation of LaMnAl11O19 hexaaluminate, while further addition of Mn (2 less than or equal to x less than or equal to 6) cause the formation of LaMnO3. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y0.9-xGdxEu0.1BO3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (GC) methods. The PL intensity of phosphors increases with the increase of x value in Y0.9-xGdxEu0.1BO3 (prepared by SD) due to an energy migration process like Gd3+ - (Gd3+)(n) - Eu3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1similar to3 mum) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.