68 resultados para Food provenance
Resumo:
This Study was conducted in Lake Dongtinghu, a large river-connected lake on the Yangtze River flood-plain, China. Our goal was to determine trophic relationships among benthic macroinvertebrates, as well as the effects of flood disturbance on the benthic food web of a river-connected lake. Macroinvertebrates in the lake fed mainly on detritus and plankton (both zooplankton and phytoplankton). Food web Structure in Lake Dongtinghu was characterized by molluscs as the dominant group, low connectance, high level of omnivory. based oil detritus and primary production, and most ingestion concentrating on a few links. Our analyses showed that flood disturbance is an important factor affecting the benthic food web in Lake Dongtinghu. The numbers of species and functional feeding groups (FFGs), and the density and biomass of macroinvertebrates decreased significantly during flooding. Connectance was higher during the flood season than in other seasons, indicating that floods have a strong effect on connectance in this Yangtze River-connected lake. Flood effects on the benthic web were also evident in the decrease of niche overlaps within and anion, FFGs. Our results provide useful information regarding biodiversity conservation on the Yangtze floodplain. Reconstructing and maintaining natural and regular flow regimes between Yangtze lakes and the river is essential for restoration of macroinvertebrates on the floodplain.
Resumo:
Gel filtration chromatography, ultra-filtration, and solid-phase extraction silica gel clean-up were evaluated for their ability to remove microcystins selectively from extracts of cyanobacteria Spirulina samples after using the reversed-phase octadecylsilyl ODS cartridge for subsequent analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The reversed-phase ODS cartridge/silica gel combination were effective and the optimal wash and elution conditions were: H2O (wash), 20% methanol in water (wash), and 90% methanol in water (elution) for the reversed-phase ODS cartridge, followed by 80% methanol in water elution in the silica gel cartridge. The presence of microcystins in 36 kinds of cyanobacteria Spirulina health food samples obtained from various retail outlets in China were detected by LC-MS/MS, and 34 samples (94%) contained microcystins ranging from 2 to 163 ng g(-1) (mean=1427 ng g(-1)), which were significantly lower than microcystins present in blue green alga products previously reported. MC-RR-which contains two molecules of arginine (R)-(in 94.4% samples) was the predominant microcystin, followed by MC-LR-where L is leucine-(30.6%) and MC-YR-where Y is tyrose-(27.8%). The possible potential health risks from chronic exposure to microcystins from contaminated cyanobacteria Spirulina health food should not be ignored, even if the toxin concentrations were low. The method presented herein is proposed to detect microcystins present in commercial cyanobacteria Spirulina samples.
Resumo:
Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.
Resumo:
Laboratory and field investigations were conducted to study the food habit of Chinese perch Siniperca chuatsi (Basilewsky) from first feeding through adult stage. Only fish larvae were consumed by Chinese perch larvae (2-21 days from hatching), and the presence of zooplankton did not have any significant effect on their survival rate. The ability of Chinese perch to feed on zooplankton is clearly limited by some innate factor. Instead of gill rakers, Chinese perch larvae have well-developed sharp teeth at the first feeding stage, and are well adapted to the piscivorous feeding habit unique to the larvae of Chinese perch, e.g. they bite and ingest the tails of other fish larvae. At the first feeding stage (2 days from hatching), daily rations were both very low, either in light or complete darkness. Although early-staged Chinese perch larvae (7-17 days from hatching) could feed in complete darkness, their daily rations were always significantly higher in light than in complete darkness. Late-staged Chinese perch larvae (21 days from hatching) were able to feed in complete darkness as well as in light, similar to the case of Chinese perch yearlings. Chinese perch yearlings (total length, 14-16 cm) consumed prey fish only and refused shrimp when visual cues were available (in light), but they consumed both prey when visual cues were not available (in complete darkness), suggesting that prey consumption by Chinese perch yearlings is affected by their sensory modality in predation. Both prey were found in the stomachs of similar-sized Chinese perch (total length, 14-32 cm) from their natural habitat, suggesting that shrimp are consumed by Chinese perch at night. Prey selection of Chinese perch with a length >38 cm, which consumed only fish in the field, appears to be based upon prey size instead of prey type. These results suggest that although environmental factors (e.g. light intensity) affect prey detection by Chinese perch, this fish is anatomically and behaviourally predisposed to prey on live fish from first feeding. This makes it a difficult fish to cultivate using conventional feeds.
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
The present study was conducted in Lake Donghu, a suburban eutrophic lake arising from the middle reaches of the Yangtze River, China. Food composition of 32 taxa of zoobenthos was analyzed from 1251 gut samples. Macroinvertebrate primary consumers ingested mainly detritus, sand grains and diatoms. The predators primarily preyed on rotifers, crustaceans, oligochaetes and chironomid larvae. The dietary overlap was relatively high among collector taxa but low among other macroinvertebrates. Food composition and dietary overlap of macroinvertebrates changed considerably, both spatially and temporally. Food web structure differed between inshore and offshore regions of Lake Donghu. The inshore web was relatively complex and dynamic whereas the offshore web was simple and stable. Taxon-specific changes of diet seem to have little effect on the benthic food web structure in offshore waters of a eutrophic lake.
Resumo:
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m(-2) bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure.
Resumo:
The icefish (Neosalanx taihuensis) of Lake Chaohu, China, foraged almost exclusively on crustacean zooplankton in both spring and summer. The icefish showed diurnal feeding periodicity, with peak feeding in the morning. No food was observed in icefish guts collected at night. Our results indicate that that the icefish was a particulate feeder and light intensity greatly affected its foraging on zooplankton. Daily consumption of zooplankton by icefish varied significantly both diurnally and among seasons, which ranged from 0.22 to 2.23 g (wet weight) per 100 g wet fish weight at temperatures between 16.3 degrees C (spring) and 28.8 degrees C (summer).
Resumo:
The capacity of hybrid tilapia Oreochromis mossambicus x O. niloticus [23.2 +/- 0.2 g (mean +/- SE)] to show compensatory growth was assessed in an 8-week experiment. Fish were deprived of feed for 1, 2 and 4 weeks, and then fed to satiation for 4 weeks; fish fed to satiation during the experiment served as control. Water temperature gradually declined from 28.1 to 25.5 degrees C throughout the experiment. Specific growth rate (SGR) decreased with progressive food deprivation. At the end of deprivation, body weight was lower in the deprived fish than in the control. Fish deprived for 4 weeks exhibited lower contents of lipids and energy in whole body, and higher moisture content and ratio of protein to energy (P/E) than those of the control; they also consumed feed faster than the control when normal feeding was resumed. All deprived fish showed higher food intake (FI) than that of the control during re-alimentation; however, enhanced SGR was only observed in the fish deprived for 4 weeks. There were no significant differences in digestibility of protein and energy, food efficiency (FE) or energy retention efficiency between the control and deprived fish. At the end of re-alimentation, deprived fish failed to catch up in body weight with the control, while content of moisture, lipids and energy, and P/E in whole body of the deprived fish did not significantly differ from that of the control. The results of the experiment revealed that the hybrid tilapia reared in freshwater showed partial capacity for compensatory growth following food deprivation of 4 weeks, and that growth compensation was due mainly to increased FI, rather than to improved FE.
Resumo:
In recent years, much progress has been made in the rearing of fish larvae fed only artificial diets. A preliminary study was made in an attempt to evaluate the effects of live food and formulated diets on survival, growth and body protein content of first-feeding larvae of Plelteobagrus fulvidraco. Three test diets varying in protein level were formulated: Feed 1 containing 45% protein, Feed 2 with 50% protein and Feed 3 with 55% protein. Larvae fed live food (newly hatched Artemia, unenriched) were the control. The experiment started 3 days post-hatch and lasted for 23 days. At the end of the 23-day trial, survival was best in the control group (65.6%) whereby the final body weight and specific growth rate (SGR) were significantly lower than those in the test feed groups. At the same time, coefficients of variation for SGR and final body weight in the test groups were significantly higher than those in the control. Whole body protein content in all treatments showed a similar tendency during development: significantly higher 3 days post-hatch, then decreasing significantly, and then increasing unstatistically 10 days post-hatch. All results suggest that live food is still better for first-feeding larvae of P. fulvidraco, since live food leads to healthier larvae growth.
Resumo:
Food web structure was studied by using carbon and nitrogen isotope ratios in a hypereutrophic subtropical Chinese lake, Lake Donghu. High external nutrient loading and the presence of abundant detritus from submersed macrophytes were responsible for the high sediment delta(15)N and delta(13)C, respectively. C-13 was significantly higher in submersed macrophytes than in other macrophytes. The similar delta(13)C values in phytoplankton, zooplankton, zoobenthos, and planktivorous fish indicate that phytoplankton was the major food source for the consumers. By using a delta(15)N mass balance model, we estimate that the contributions of zooplankton to the diet of silver carp and bighead carp were 54% and 74%, respectively, which is in agreement with previous microscopic observations on intestinal contents of these fishes.
Resumo:
The compensatory responses of juvenile gibel carp and Chinese longsnout catfish to four cycles of 1 part of a study designed to determine feeding regimes that would maximise growth rates. Both species showed compensatory growth in the re-feeding periods. The compensation was not sufficient for the deprived fish to match the growth trajectories of controls fed to satiation daily. The compensatory growth response was more clearly defined in the later cycles. The deprived fish showed hyperphagia during the 2-week periods of re-feeding and the hyperphagic response was clearer in the later cycles. The hyperphagia tended to persist for both weeks of the re-feeding period. The gibel carp showed no difference in gross growth efficiency between deprived and control fish. In the catfish, the gross growth efficiency of the deprived fish was marginally higher than that of control fish, but the efficiency varied erratically from week to week. Over the experiment, the deprived fish achieved growth rates 75-80% of those shown by control fish, although fed at a frequency of 66%. There was no evidence of growth over-compensation with the deprivation-re-feeding protocol used in this study. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The food intake, growth, food conversion ratio and survival of yearling pufferfish, Fugu obscurus Abe, were investigated under different water salinity conditions over a 54-day period. Within the salinity regimes of 0 (freshwater), 8, 18, and 35parts per thousand, the food intake levels were 0.97%, 1.43%, 1.19% and 1.01%, respectively; food conversion ratios were 1.31, 1.93, 1.61 and 1.36, respectively; and specific growth rates were 0.41%, 1.15%, 0.84%, and 0.35%, respectively. The three data series were reduced with increasing salinity. However, the survival rates did not show the same tendencies, which were 80%, 100%, 100%, and 67%, respectively. There were significant differences among the treatments. In conclusion, the yearling pufferfish optimum culture salinity condition was about 8parts per thousand.
Resumo:
Body length, instar duration, fecundity, and survival rate of Moina irrasa from a subtropical Chinese lake were studied at three food concentrations (4, 8, and 40 mg/L, wet weight) and six temperatures (10, 15, 20, 25, 30, and 35degreesC) in the laboratory. Body length tended to decrease with increase of temperature, while the trend was reversed as food concentration rose. M. irrasa had three juvenile instars, except there were four at 10degreesC, and the number of adult instars showed great variation (3-15). Water temperature and food concentration both affected the duration time of adult instars. The largest broods were from the third to sixth adult instars, depending on food and temperature, and the mean highest number of offspring per brood was 56 at 25degreesC. A significant relationship between body length and brood size appeared at high (40 mg/L) and medium (8 mg/L) food concentrations, while there was no significant relationship at low food concentration except at 25 degreesC. The intrinsic rate of population increase ranged between 0.104 and 1.825 ind./day.
Resumo:
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of I week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology (C) 2003 The Fisheries Society of the British Isles.