33 resultados para Florida. Division of Plant Industry
Resumo:
We examined the effect of different plant architecture types on epiphytic macroinvertebrates of a shallow macrophyte-dominated lake in China. Macroinvertebrates were sampled from four dominant submersed macrophytes in the lake - two dissected plants (Myriophyllum spicatum L. and Ceratophyllum demersum L.) and two undissected plants (Potamogeton maackianus A. Benn. and Vallisneria spiralis L.). Macro invertebrate richness showed significant differences among four submersed macrophyte habitats, and higher density per g of dry plant were associated with dissected plants than undissected plants. The average abundance in dissected plants was as three-six times as in undissected plants. The biodiversity of epiphytic macroinvertebrates was higher in dissected plants than undissected plants. Our results suggest that dissected plants provide different habitat for macroinvertebrates than dissected plant, and this concurs with the hypothesis that the former could support more epiphytic macroinvertebrates than the latter.
Resumo:
Division of labour is a marked feature of multicellular organisms. Margulis proposed that the ancestors of metazoans had only one microtubule organizing center (MTOC), so they could not move and divide simultaneously. Selection for simultaneous movement and cell division had driven the division of labour between cells. However, no evidence or explanation for this assumption was provided. Why could the unicellular ancetors not have multiple MTOCs? The gain and loss of three possible strategies are discussed. It was found that the advantage of one or two MTOC per cell is environment-dependent. Unicellular organisms with only one MTOC per cell are favored only in resource-limited environments without strong predatory pressure. If division of labour occurring in a bicellular organism just makes simultaneous movement and cell division possible, the possibility of its fixation by natural selection is very low because a somatic cell performing the function of an MTOC is obviously wasting resources. Evolutionary biologists should search for other selective forces for division of labour in cells.
Resumo:
Plant cell cultures have been suggested as a feasible technology for the production of a myriad of plant-derived metabolites. However, commercial application of plant cell culture has met limited success with only a handful of metabolites produced at the pilot- and commercial-scales. To improve the production of secondary metabolites in plant cell cultures, efforts have been devoted predominantly to the optimization of biosynthetic pathways by both process and genetic engineering approaches. Given that secondary metabolism includes-the synthesis. metabolism and catabolism of endogenous compounds by the specialized proteins, this review intends to draw attention to the manipulation and optimization of post-biosynthetic events that follow the formation of core metabolite structures in biosynthetic pathways. These post-biosynthetic events-the chemical and enzymatic modifications, transport, storage/secretion and catabolism/degradation have been largely unexplored in the past. Potential areas are identified where further research is needed to answer fundamental questions that have implications for advanced bioprocess design. Anthocyanin production by plant cell cultures is used as a case study for this discussion, as it presents a good example of compounds for which there are extensive research publications but still no commercial bioprocess. It is perceived that research on post-biosynthetic processes may lead to future opportunities for significant advances in commercial plant cell cultures. (C) 2002 Elsevier Science Inc. All rights reserved.