28 resultados para Fault detection, fail-safety, fault tolerance, UAV
Resumo:
The electronic structure of a bounded intrinsic stacking fault in silicon is calculated. The method used is an LCAO-scheme (Linear Combinations of Atomic Orbitals) taking ten atomic orbitals of s-, p-, and d-type into account. The levels in the band gap are extracted using Lanczos' algorithm and a continued fraction representation of the local density of states. We find occupied states located up to 0.3 eV above the valence band maximum (E(v)). This significantly differs from the result obtained for the ideal infinite fault for which the interface state is located at E(v)+ 0.1 eV.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The onshore-offshore deep seismic experiment was carried out for the first time and filled the blankness of the seismic surveys in the transition area between South China and northeastern South China Sea. The seismic data were analyzed and processed. The different seismic phases were identified and their travel time arrivals were modeled by ray-tracing to study the P-wave velocity crustal structure of this area. The crustal structure of this area is the continental crust. The crust thickness is gradually decreasing southward along the on-shore-offshore seismic line. The low-velocity layer (5.5 similar to 5.9 km (.) s(-1)) exists generally in the middle crust (about 10.0 similar to 18.0km)with about 2.5 similar to 4.0 km thickness, which is also thinning seaward. No obvious high-velocity layer appears in the lower crust. The Binhai (littoral) fault zone is a low velocity zone, which is located about 35km southeast to the Nan'ao station and corresponding to the gradient belt of gravity & magnetism anomalies. The depth of the fault zone is close to the Moho discontinuity. The littoral fault zone is a boundary between the normal continental crust of South China and the thinned continental crust of the sea area.
Resumo:
Offshore active faults, especially those in the deep sea, are very difficult to study because of the water and sedimentary cover. To characterize the nature and geometry of offshore active faults, a combination of methods must be employed. Generally, seismic profiling is used to map these faults, but often only fault-related folds rather than fracture planes are imaged. Multi-beam swath bathymetry provides information on the structure and growth history of a fault because movements of an active fault are reflected in the bottom morphology. Submersible and deep-tow surveys allow direct observations of deformations on the seafloor (including fracture zones and microstructures). In the deep sea, linearly aligned cold seep communities provide indirect evidence for active faults and the spatial migration of their activities. The Western Sagami Bay fault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied in detail using the above methods. The bottom morphology, fractured breccias directly observed and photographed, seismic profiles, as well as distribution and migration of cold seep communities provide evidence for the nature and geometry of the fault. Focal mechanism solutions of selected earthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximum compression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating a left-lateral strike-slip fault.
Resumo:
The stratigraphic architecture, structure and Cenozoic tectonic evolution of the Tan-Lu fault zone in Laizhou Bay, eastern China, are analyzed based on interpretations of 31 new 2D seismic lines across Laizhou Bay. Cenozoic strata in the study area are divided into two layers separated by a prominent and widespread unconformity. The upper sedimentary layer is made up of Neogene and Quaternary fluvial and marine sediments, while the lower layer consists of Paleogene lacustrine and fluvial facies. In terms of tectonics, the sediments beneath the unconformity can be divided into four main structural units: the west depression, central uplift, east depression and Ludong uplift. The two branches of the middle Tan-Lu fault zone differ in their geometry and offset: the east branch fault is a steeply dipping S-shaped strike-slip fault that cuts acoustic basement at depths greater than 8 km, whereas the west branch fault is a relatively shallow normal fault. The Tan-Lu fault zone is the key fault in the study area, having controlled its Cenozoic evolution. Based on balanced cross-sections constructed along transverse seismic line 99.8 and longitudinal seismic line 699.0, the Cenozoic evolution of the middle Tan-Lu fault zone is divided into three stages: Paleocene-Eocene transtension, Oligocene-Early Miocene transpression and Middle Miocene to present-day stable subsidence. The reasons for the contrasting tectonic features of the two branch faults and the timing of the change from transtension to transpression are discussed. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.