20 resultados para Fatal attacks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

文中研究由密文的完整性检查而导致的数据保密性问题,提出一个新的安全概念——加密方案在密文验证攻击下的不可区分性(IND-CVA:indistinguishability ofencryption scheme under ciphertext verification attacks)来刻画加密方案在这种情况下的保密安全性。IND-CVA允许敌手访问加密oracle和密文验证oracle。与IND-CPA和IND-CCA相比,IND-CVA比IND-CPA稍微强些,但要比IND-CCA弱得多。IND-CVA能使多数常用的加密方案(如:OTP,CBC,及CTR)得以满足。并且,这个IND-CVA可以恰当地刻画安全信道的保密安全性。将认证方案和加密方案结合起来是保证通信安全的一种常用方法。然而,在IND-CVA模型下,当利用认证方案来加强保密安全性的时候,却有可能反而破坏了原有的保密安全性。IND-CVA揭示了完整性对保密性的影响,准确刻画了安全信道的保密性要求,为协议设计提供了有益的参考。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared with other existing methods, the feature point-based image watermarking schemes can resist to global geometric attacks and local geometric attacks, especially cropping and random bending attacks (RBAs), by binding watermark synchronization with salient image characteristics. However, the watermark detection rate remains low in the current feature point-based watermarking schemes. The main reason is that both of feature point extraction and watermark embedding are more or less related to the pixel position, which is seriously distorted by the interpolation error and the shift problem during geometric attacks. In view of these facts, this paper proposes a geometrically robust image watermarking scheme based on local histogram. Our scheme mainly consists of three components: (1) feature points extraction and local circular regions (LCRs) construction are conducted by using Harris-Laplace detector; (2) a mechanism of grapy theoretical clustering-based feature selection is used to choose a set of non-overlapped LCRs, then geometrically invariant LCRs are completely formed through dominant orientation normalization; and (3) the histogram and mean statistically independent of the pixel position are calculated over the selected LCRs and utilized to embed watermarks. Experimental results demonstrate that the proposed scheme can provide sufficient robustness against geometric attacks as well as common image processing operations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feature-based image watermarking schemes, which aim to survive various geometric distortions, have attracted great attention in recent years. Existing schemes have shown robustness against rotation, scaling, and translation, but few are resistant to cropping, nonisotropic scaling, random bending attacks (RBAs), and affine transformations. Seo and Yoo present a geometrically invariant image watermarking based on affine covariant regions (ACRs) that provide a certain degree of robustness. To further enhance the robustness, we propose a new image watermarking scheme on the basis of Seo's work, which is insensitive to geometric distortions as well as common image processing operations. Our scheme is mainly composed of three components: 1) feature selection procedure based on graph theoretical clustering algorithm is applied to obtain a set of stable and nonoverlapped ACRs; 2) for each chosen ACR, local normalization, and orientation alignment are performed to generate a geometrically invariant region, which can obviously improve the robustness of the proposed watermarking scheme; and 3) in order to prevent the degradation in image quality caused by the normalization and inverse normalization, indirect inverse normalization is adopted to achieve a good compromise between the imperceptibility and robustness. Experiments are carried out on an image set of 100 images collected from Internet, and the preliminary results demonstrate that the developed method improves the performance over some representative image watermarking approaches in terms of robustness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.