32 resultados para Family and population
Resumo:
In this paper, we viewed the diel vertical migration (DVM) of copepod in the context of the animal's immediate behaviors of everyday concerns and constructed an instantaneous behavioral criterion effective for DVM and non-DVM behaviors. This criterion employed the function of 'venturous revenue' (VR), which is the product of the food intake and probability of the survival, to evaluate the gains and losses of the behaviors that the copepod could trade-off. The optimal behaviors are to find the optimal habitats to maximize VR. Two types of VRs are formulated and tested by the theoretical analysis and simulations. The sensed VR, monitoring the real-time changes of trade-offs and thereby determining the optimum habitat, is validated to be the effective objective function for the optimization of the behavior; whereas, the realized VR, quantifying the actual profit obtained by an optimal copepod in the sensed-VR-determined habitat, defines the life history of a specific age cohort. The achievement of a robust copepod overwintering stock through integrating the dynamics of the constituent age cohorts subjected to the instantaneous behavioral criterion for DVM clearly exemplified a possible way bridging the immediate pursuit of an individual and the end success of the population. (c) 2005 Published by Elsevier Ltd.
Resumo:
The impacts of Prorocentrum donghaiense Lu and Alexandrium catenella Balech, causative species of the large-scale HAB in the East China Sea, were studied under laboratory conditions. According to bloom densities, the effects of monoculture and mixture of the two species were examined on the egg-hatching success of Argopecten irradians Lamarck, and the population growth of Brachionus plicatilis Muller and Moina mongolica Daday. The results showed that monoculture of A. catenella had a significant inhibition on the egg hatching success of A. irradians, and the population growth of B. plicatilis and M. mongolica. The median effective densities ( EDSo) inhibiting the egg hatching success of A. irradians for 24 h and the population growth of B. plicatilis and M. mongolica for 96 h were 800, 630, and 2 400 cells/cm(3), respectively. Monoculture of P. donghaiense has no such inhibitory effect on the egg hatching success of A. irradians; P. donghaiense at lower suitable densities could sustain the population growth of B. plicatilis (1 x 10(4) similar to 3 x 10(4)cells/cm(3)) and M. mongolica (2 x 10(4) similar to 5 x 10(4) cells/cm(3)); P. doaghaiense at higher densities had significantly adverse effect on the population growth of B. plicatilis (4 x 10(4) similar to 10 x 10(4) cells/cm(3)) and M. mongolica (10 x 10(4) cells/cm(3)). When the two algae were mixed according to bloom densities, P. donghaiense at suitable densities to some extent could decrease the toxicity of A. catenella to B. plicatilis and M. mongolica. The results indicated that the large-scale HAB in the East China Sea could have adverse effect on zooplankton, and might further influence the marine ecosystem, especially when there was also Alexandrium bloom.
Resumo:
Background: Short and long interspersed elements (SINEs and LINEs, respectively), two types of retroposons, are active in shaping the architecture of genomes and powerful tools for studies of phylogeny and population biology. Here we developed special protocol to apply biotin-streptavidin bead system into isolation of interspersed repeated sequences rapidly and efficiently, in which SINEs and LINEs were captured directly from digested genomic DNA by hybridization to bead-probe complex in solution instead of traditional strategy including genomic library construction and screening. Results: A new couple of SINEs and LINEs that shared an almost identical 3'tail was isolated and characterized in silver carp and bighead carp of two closely related species. These SINEs (34 members), designated HAmo SINE family, were little divergent in sequence and flanked by obvious TSD indicated that HAmo SINE was very young family. The copy numbers of this family was estimated to 2 x 10(5) and 1.7 x 10(5) per haploid genome by Real-Time qPCR, respectively. The LINEs, identified as the homologs of LINE2 in other fishes, had a conserved primary sequence and secondary structures of the 3'tail region that was almost identical to that of HAmo SINE. These evidences suggest that HAmo SINEs are active and amplified recently utilizing the enzymatic machinery for retroposition of HAmoL2 through the recognition of higher-order structures of the conserved 42-tail region. We analyzed the possible structures of HAmo SINE that lead to successful amplification in genome and then deduced that HAmo SINE, SmaI SINE and FokI SINE that were similar in sequence each other, were probably generated independently and created by LINE family within the same lineage of a LINE phylogeny in the genomes of different hosts. Conclusion: The presented results show the advantage of the novel method for retroposons isolation and a pair of young SINE family and its partner LINE family in two carp fishes, which strengthened the hypotheses containing the slippage model for initiation of reverse transcription, retropositional parasitism of SINEs on LINEs, the formation of the stem loop structure in 3'tail region of some SINEs and LINEs and the mechanism of template switching in generating new SINE family.
Resumo:
Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25-50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We describe the microincrements, checks and annuli in the lapilli of the schizothoracine Ptychobarbus dipogon, an endemic species of the Tibetan plateau. We collected samples in the Yarlung Tsangpo River and its tributaries on a monthly basis (from April 2004 to August 2006). We describe the shape features of the three pairs of otoliths and document the full trajectory of lapillus development. We found that five to seven checks were clearly visible in the opaque zone of the first annulus. The pattern of 21-23 daily growth increments within each check might be explained as a lunar-induced deposition. We counted between 137 and 154 increments within the first annulus. Annuli appeared as a sequence of gradually declining increment widths, whereas false rings were characterized by abrupt checks. Our oldest estimates were 23(+)years for males and 44(+) for females. The time of annulus completion was clearly between March and April each year using monthly marginal increments analysis. We consider the factors responsible for daily increment formation as an endogenous circadian rhythm. Environmental information, such as strong sunlight and cold water temperatures in the Tibetan Plateau, could reinforce the endogenous daily cycle. Our results provided important data addressing the ecology and population dynamics of P. dipogon.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) belongs to the eIF2 alpha kinase family and plays a critical role in interferon (IFN)-mediated antiviral response. Recently, in Japanese flounder (Paralichthys olivaceus), a PKR gene has been identified. In this study, we showed that PoPKR localized to the cytoplasm, and the dsRNA-binding motifs (dsRBMs) played a determinative role in protein localization. In cultured FEC cells, PoPKR was detected at a low level of constitutive expression but was highly induced after treatment with UV-inactivated grass carp hemorrhagic virus, active SMRV and Poly I:C although with different expression kinetics. In flounder, PoPKR was ubiquitously distributed in all tested tissues, and SMRV infection resulted in significant upregulation at mRNA and protein levels. In order to reveal the role of PoPKR in host antiviral response, its expression upon exposure to various inducers was characterized and further compared with that of PoHRI, which is another eIF2 alpha kinase of flounder. Interestingly, expression comparison revealed that all inducers stimulated upregulation of PoHRI in cultured flounder embryonic cells and fish, with a similar kinetics to PoPKR but to a less extent. These results suggest that, during antiviral immune response, both flounder eIF2 alpha kinases might play similar roles and that PoPKR is the predominant kinase. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l(-1)) and biomass (5.2 mg l(-1)) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0-100 mg l(-1) (r = -0.82, P < 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.
Resumo:
We investigated diel vertical migrations (DVM) and distributions of rotifers in summer, 2004 and spring, 2005, in Xiangxi Bay of the Three Gorges Reservoir, China. Water temperature, pH, conductivity, and phytoplankton were closely related to rotifer vertical distribution, while dissolved oxygen had no relationship with the vertical distribution of rotifers. The species composition and population density of rotifers changed significantly between seasons. However, rotifer vertical distributions in both seasons were similar. They aggregated at specific depths in the water column. All the rotifer species inhabited the surface layers (0.5-5 m). Generally, the rotifers did not display DVM except for Polyarthra vulgaris (in summer), which performed reverse migration. The reason that rotifers did not perform DVM may be explained by the low abundance of competitors and predators and the high density of food resources at the surface strata.
Resumo:
Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H (O)) and expected (H (E)) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy-Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.
Resumo:
The double-stranded-RNA-dependent protein kinase (PKR) is an important component in an antiviral defence pathway that is mediated by interferon (IFN) in vertebrates. Previously, some important IFN system genes had been identified from an IFN-producing CAB (crucian carp Carassius auratus blastulae embryonic) cells after treatment with UV-inactivated GCHV (grass carp haemorrhage virus). Here, a fish PKR-like gene, named CaPKR-like, is cloned and sequenced from the same virally infected CAB cells. It has 2192 base pairs in length with a largest open reading frame (ORF) encoding a protein of 513 amino acid residues. BLAST search reveals that the putative CaPKR-like protein is most homologous to human PKR and also has a high-level homology with all members of a family of eIF2alpha kinases. Structurally, CaPKR-like possesses a conserved C-terminal catalytic domain of eIF2alpha kinase family and the most similarity to mammalian PKRs. Within its N-terminus, there are no dsRNA-binding domains conserved in mammalian PKRs instead of two putative Z-DNA binding domains (Zalpha). Like mammalian PKRs, CaPKR-like had a very low level of constitutive expression in normal CAB cells but was up-regulated in response to active GCHV, UV-inactivated GCHV and CAB IFN, implying that the transcriptional activation of CaPKR-like by viral infection is mediated possibly by newly produced CAB IFN, which was further supported by using cycloheximide, a potent inhibitor of protein synthesis. The results together suggested that CaPKR-like was the first identified fish gene most similar to mammalian PKRs. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The sequencing analysis of the mitochondrial DNA control region (mtCR DNA) was performed to assess the genetic divergence and population structure of the Chinese sucker Myxocyprinus asiaticus (Cypriniformes Catostomidae) using four sample lots from natural populations of the Yangtze River. The mtCR DNA sequences of approximately 920 base pairs were obtained. A total of 223 nucleotide positions were polymorphic, and these defined 39 haplotypes. Of the 39 haplotypes, 37 (90%) were not shared, and among the populations as a whole there was little sharing of haplotypes. The average haplotype diversity (0.958) and the average nucleotide diversity (0.052) indicated a higher level of genetic diversity of Chinese sucker through the river. Analysis of molecular variation (AMOVA) of data revealed significant partitioning of variance (P<0.001) among populations (60.29%), and within populations (39.71%). The topology according to the neighbor joining and maximum parsimony methods showed mosaic composition of the 39 haplotypes, suggesting that the populations wore not completely divergent. The pairwise F statistic values, however, indicated that the population structuring existed to some extent among the geographic populations. There was a positive relationship between the aquatic distance and the genetic distance (Fst) among the populations (P<0.05). Based on our data, it is suggested that genetic drift, gene flow, and stochastic events are the possible factors influencing the population structure and genetic variation.
Resumo:
Expansion of economic activities, urbanisation, increased resource use and population growth are continuously increasing the vulnerability of the coastal zone. This vulnerability is now further raised by the threat of climate change and accelerated sea level rise. The potentially severe impacts force policy-makers to also consider long-term planning for climate change and sea level rise. For reasons of efficiency and effectiveness this long-term planning should be integrated with existing short-term plans, thus creating an Integrated Coastal Zone Management programme. As a starting point for coastal zone management, the assessment of a country's or region's vulnerability to accelerated sea level rise is of utmost importance. The Intergovernmental Panel on Climate Change has developed a common methodology for this purpose. Studies carried out according to this Common Methodology have been compared and combined, from which general conclusions on local, regional and global vulnerability have been drawn, the latter in the form of a Global Vulnerability Assessment. In order to address the challenge of coping with climate change and accelerated sea level rise, it is essential to foresee the possible impacts, and to take precautionary action. Because of the long lead times needed for creating the required technical and institutional infrastructures, such action should be taken in the short term. Furthermore, it should be part of a broader coastal zone management and planning context. This will require a holistic view, shared by the different institutional levels that exist, along which different needs and interests should be balanced.
Resumo:
Zhikong scallop (Chlamys farreri Jones et Preston 1904) is one of the most important aquaculture species in China. The development of a genetic linkage map would provide a powerful tool for the genetic improvement of this species. Amplified fragment length polymorphism (AFLP) is a PCR-based technique that has proven to be powerful in genome fingerprinting and mapping, and population analysis. Genetic maps of C. farreri were constructed using AFLP markers and a full-sib family with 60 progeny. A total of 503 segregating AFLP markers were obtained, with 472 following the Mendelian segregation ratio of 1:1 and 31 markers showing significant (P< 0.05) segregation distortion. The male map contained 166 informative AFLP markers in 23 linkage groups covering 2468 cM. The average distance between markers was 14.9 cM. The female genetic map consisted of 198 markers in 25 linkage groups spanning 3130 cM with an average inter-marker spacing of 15.8 cM. DNA polymorphisms that segregated in a 3:1 ratio as well as the AFLP markers that were heterozygous in both parents were included to construct combined linkage genetic map. Five shared linkage groups, ranging from 61.1 to 162.5 cM, were identified between the male and female maps, covering 431 cM. Amplified fragment length polymorphism markers appeared to be evenly distributed within the linkage groups. Although preliminary, these maps provide a starting point for the mapping of the functional genes and quantitative trait loci in C. farreri.
Resumo:
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5'-terminal untranslated region (UTR) of 60 bp and a 3'-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys(53), Cys(128), Cys(144), Cys(152)) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei. (C) 2008 Elsevier Ltd. All rights reserved.