66 resultados para Factors of satisfaction
Resumo:
The corrosivity of seabed sediment at spots at different distances from seashore was studied based on in situ investigations in the northern sea area of the Yellow River mouth. The results show that there is close relation between distance from seashore and corrosivity of seabed sediment.
Resumo:
25%Al-Zn alloy coating performs better than hot dip galvanized coating and 55%Al-Zn-Si coating with regard to general seawater corrosion protection. This study deals with the interfacial intermetallic layer's growth, which affects considerably the corrosion resistance and mechanical properties of 25%Al-Zn alloy coatings, by means of three-factor quadratic regressive orthogonal experiments, The regression equation shows that the intermetallic layer thickness decreases rapidly with increasing content of Si added to the Zn-Al alloy bath, increases with rise in bath temperature and prolonging dip time. The most effective factor that determined the thickness of intermetallic layer was the amount of Si added to Zn-Al alloy bath, while the effect of bath temperature and dip time on the thickness of intermetallic layer were not very obvious.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.
Resumo:
The mode frequency and the quality factor of nanowire cavities are calculated from the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In a free-standing nanowire cavity with dielectric constant epsilon = 6.0 and a length of 5 mu m, quality factors of 130, 159, and 151 are obtained for the HE11 modes with a wavelength around 375 nm, at cavity radius of 60, 75, and 90 nm, respectively. The corresponding quality factors reduce to 78, 94, and 86 for a nanowire cavity standing on a sapphire substrate with a refractive index of 1.8. The mode quality factors are also calculated for the TE01 and TM01 modes, and the mode reflectivities are calculated from the mode quality factors.
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.
Resumo:
The simplified governing equations and corresponding boundary conditions of flexural vibration of viscoelastically damped unsymmetrical sandwich plates are given. The asymptotic solution of the equations is then discussed. If only the first terms of the asymptotic solution of all variables are taken as an approximate solution, the result is identical with that obtained from the Modal Strain Energy (MSE) Method. As more terms of the asymptotic solution are taken, the successive calculations show improved accuracy. With the natural frequencies and the modal loss factors of a damped sandwich plate known, one can calculate the response of the plate to various loads providing a reliable basis for engineering design.
Resumo:
Firstly, the main factors are obtained by use of dimensionless analysis. Secondly, the time scaling factors in centrifuge modeling of bucket foundations under dynamic load are analyzed based on dimensionless analysis and control- ling equation. A simplified method for dealing with the conflict of scaling factors of the inertial and the percolation in sand foundation is presented. The presented method is that the material for experiments is not changed while the effects are modified by perturbation method. Thirdly, the characteristic time of liquefaction state and the characteristic scale of affected zone are analyzed.
Resumo:
Previous studies have indicated that genetic variations in the factors of insulin/insulin-like growth factor 1 (IGF-1) signaling pathway could influence human life-span by affecting IGF-1 levels. The promoter region of the IGF-1 gene is an obvious candida
Resumo:
Cerebral prefrontal function is one of the important aspects in neurobiology. Based on the experimental results of neuroanatomy, neurophysiology, behavioral sciences, and the principles of cybernetics and information theory after constructed a simple model simulating prefrontal control function, this paper simulated the behavior of Macaca mulatta completing delayed tasks both before and after its cerebral prefrontal cortex being damaged. The results indicated that there is an obvious difference in the capacity of completing delayed response tasks for the normal monkeys and those of prefrontal cortex cut away. The results are agreement with experiments. The authors suggest that the factors of affecting complete delayed response tasks might be in information keeping and extracting of memory including information storing, keeping and extracting procedures rather than in information storing process.
Resumo:
Mode characteristics of a square microcavity with an output waveguide on the middle of one side, laterally confined by an insulating layer SiO2 and a p-electrode metal Au, are investigated by two-dimensional finite-difference time-domain technique. The mode quality (Q) factors versus the width of the output waveguide are calculated for Fabry-Peacuterot type and whispering-gallery type modes in the square cavity. Mode coupling between the confined modes in the square cavity and the guided modes in the output waveguide determines the mode Q factors, which is greatly influenced by the symmetry behaviors of the modes. Fabry-Peacuterot type modes can also have high Q factors due to the high reflectivity of the Au layer for the vertical incident mode light rays. For the square cavity with side length 4 mu m and refractive index 3.2, the mode Q factors of the Fabry-Peacuterot type modes can reach 10(4) at the mode wavelength of 1.5 mu m as the output waveguide width is 0.4 mu m.
Resumo:
The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3143025]
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
Resumo:
The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x, y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.