143 resultados para FUEL-CELL ELECTRODES
Resumo:
Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.
Resumo:
A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.
Resumo:
To improve the cycle life of unitized regenerative fuel cells (URFCs), an electrode with a composite structure has been developed. The cycle life and polarization curves for both fuel cell and electrolysis modes of URFC operation were investigated. The cycle life of URFCs was improved considerably and the performance was fairly constant during 25 cycles, which illustrates that the composite electrode is effective in sustaining the cyclic performance of URFCs. It shows the URFCs with such an electrode structure are promising for practical applications. (C) 2004 The Electrochemical Society.
Resumo:
The fabrication and performance evaluation of a miniature twin-fuel-cell on silicon wafers are presented in this paper. The miniature twin-fuel-cell was fabricated in series using two membrane-electrode-assemblies sandwiched between two silicon substrates in which electric current, reactant, and product flow. The novel structure of the miniature twin-fuel-cell is that the electricity interconnect from the cathode of one cell to the anode of another cell is made on the same plane. The interconnect was fabricated by sputtering a layer of copper over a layer of gold on the top of the silicon wafer. Silicon dioxide was deposited on the silicon wafer adjacent to the copper layer to prevent short-circuiting between the twin cells. The feed holes and channels in the silicon wafers were prepared by anisotropic silicon etching from the back and front of the wafer with silicon dioxide acting as intrinsic etch-stop layer. Operating on dry H-2/O-2 at 25 degreesC and atmospheric pressure, the measured peak power density was 190.4 mW/cm(2) at 270 mA/cm(2) for the miniature twin-fuel-cell using a Nafion 112 membrane. Based on the polarization curves of the twin-fuel-cell and the two single cells, the interconnect resistance between the twin cells was calculated to be in the range from 0.0113 Omega (at 10 mA/cm(2)) to 0.0150 Omega (at 300 mA/cm(2)), which is relatively low. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Porous polytetrafluoroethylene (PTFE) membranes were used as support material for Nafion((R))/PTFE composite membranes. The composite membranes were synthesized by impregnating porous PTFE membranes with a self-made Nafion solution. The resulting composite membranes were mechanically durable and quite thin relative to traditional perfluorosulfonated ionomer membranes (PFSI); we expect the composite membranes to be of low resistance and cost. In this study, we used three kinds of porous PTFE films to prepare Nafion/PTFE composite membranes of different thickness. Scanning electron micrographs and oxygen permeabilities showed that Nafion resin is distributed uniformly in the composite membrane and completely plug the micropores, there is a continuous thin Nation film present on the PTFE surface. The variation in water content of the composite and Nafion 115 membranes with temperature was determined. At the same temperature, water content of the composite membranes was smaller than that of the Nafion 115. In both dry and wet conditions, maximum strength and break strength of C-325(#) and C-345(#) were larger than those of Nafion 112 due to the reinforcing effect of the porous PTFE films. And the PEMFC performances and the lifetime of the composite membranes were also tested on the self-made apparatus. Results showed that the bigger the porosity of the substrate PTFE films, the better the fuel cell performance; the fuel cell performances of the thin composite membranes were superior to that of Nation 115 membrane; and after 180 h stability test at 500 mA/cm(2), the cell voltage showed no obvious drop. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
Bisphenol monomer 4-carboxylphenyl hydroquinone (4C-PH) containing carboxyl groups was synthesized by diazotization reaction of p-aminobenzoic acid and 1,4-benzoquinone and subsequent reductive reaction. Copolymerization of bisphenol A, 4C-PH, sodium 5,5'-carbonylbis(2-fluorobenzene-sulfonate) and 4,4'-difluorobenzophenone at various molar ratios through aromatic nucleophilic substitution reaction resulted in a new sulfonated poly(ether ether ketone) containing pendant carboxyl groups (C-SPEEK). The structures of the monomer 4C-PH and copolymers were confirmed by FT-IR and H-1 NMR. Flexible and transparent membranes with sulfonic and carboxylic acid groups as the proton conducting sites were prepared. The dependence of ion-exchange capacity (IEC), water uptake, proton conductivity and methanol permeability on the degree of sulfonation has been studied.
Resumo:
Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.
Resumo:
The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.
Resumo:
As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.
Resumo:
The controllable synthesis of nanosized carbon-supported Pd catalysts through a surface replacement reaction (SRR) method is reported in this paper. Depending on the synthesis conditions the Pd can be formed on Co nanoparticles surface in hollow nanospheres or nanoparticles structures. Citrate anion acts as a stabilizer for the nanostructures, and protonation of the third carboxyl anion and hence the nanostructure and size of the resulting catalysts are controlled via the pH of the synthesis solution. Pd hollow nanospheres, containing smaller Pd nanoparticles, supported on carbon are formed under the condition of pH 9 reaction solution. Meanwhile, highly dispersed carbon-supported Pd nanoparticles can be formed with higher pH (pH >= 10). All catalysts prepared through the SRR method show enhanced activities for the HCOOH electro-oxidation reaction compared to catalysts reduced by NaBH4.