112 resultados para FUEL
Resumo:
High amounts of acid compounds in bio-oil not only lead to the deleterious properties such as corrosiveness and high acidity, but also set up many obstacles to its wide applications. By hydrotreating the bio-oil under mild conditions, some carboxylic acid compounds could be converted to alcohols which would esterify with the unconverted acids in the bio-oil to produce esters. The properties of the bio-oil could be improved by this method. In the paper, the raw bio-oil was produced by vacuum pyrolysis of pine sawdust. The optimal production conditions were investigated. A series of nickel-based catalysts were prepared. Their catalytic activities were evaluated by upgrading of model compound (glacial acetic acid). Results showed that the reduced Mo-10Ni/gamma-Al2O3 catalyst had the highest activity with the acetic acid conversion of 33.2%. Upgrading of the raw bio-oil was investigated over reduced Mo-10Ni/gamma-Al2O3 catalyst. After the upgrading process, the pH value of the bio-oil increased from 2.16 to 2.84. The water content increased from 46.2 wt.% to 58.99 wt.%. The H element content in the bio-oil increased from 6.61 wt.% to 6.93 wt.%. The dynamic viscosity decreased a little. The results of GC-MS spectrometry analysis showed that the ester compounds in the upgraded bio-oil increased by 3 times. it is possible to improve the properties of bio-oil by hydrotreating and esterifying carboxyl group compounds in the bio-oil.
Resumo:
To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.
Resumo:
With naphthalene as biomass tar model compound, partial oxidation reforming (with addition of O-2) and dry reforming of biomass fuel gas were investigated over nickel-based monoliths at the same conditions. The results showed that both processes had excellent performance in upgrading biomass raw fuel gas. Above 99% of naphthalene was converted into synthesis gases (H-2+CO). About 2.8 wt% of coke deposition was detected on the catalyst surface for dry reforming process at 750 degrees C during 108 h lifetime test. However, no Coke deposition was detected for partial oxidation reforming process, which indicated that addition of O-2 can effectively prohibit the coke formation. O-2 Can also increase the CH4 conversion and H-2/CO ratio of the producer gas. The average conversion of CH4 in dry and partial oxidation reforming process was 92% and 95%, respectively. The average H-2/CO ratio increased from 0.95 to 1.1 with the addition of O-2, which was suitable to be used as synthesis gas for dimethyl ether (DME) synthesis.
Resumo:
The characteristic of biodiesel fuel production from transesterification of soybean oil is studied. The reactant solution is the mixture of soybean oil, methanol, and solvent. A new lipase immobilization method, textile cloth immobilization, was developed in this study. Immobilized Candida lipase sp. 99-125 was applied as the enzyme catalyst. The effect of flow rate of reaction liquid, solvents, reaction time, and water content on the biodiesel yield is investigated. Products analysis shows that the main components in biodiesel are methyl sterate, methyl hexadecanoate, methyl oleate, methyl linoleate, and methyl linolenate. The test results indicate that the maximum yield of biodiesel of 92% was obtained at the conditions of hexane being the solvent, water content being 20 wt%, and reaction time being 24 h.
Resumo:
直接甲醇燃料电池与间接甲醇燃料电池相比,体积更小,重量更轻,因此在一些领域有诱人的应用前景。但是,在它们实际应用之前,必须解决一些具体的技术难题。目前,甲醇从阳极透过到阴极是影响电池性能的主要难题之一,另外,催化剂和电极的制备方法也对电池的性能有重要的影响。本论文的主要目的在于研制低甲醇透过直接甲醇燃料电池并有效地提高电池的性能。为了减小甲醇在Nafion117膜中的透过,提出并研制了铭纳米粒子修饰的Nafion复合膜,该方法包括与[Pd(NH_4)_4]~(2+)离子的离子交换过程和化学还原过程。研究了一种制备高分散性铂基催化剂的方法。另外我们还研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,刘一电池性能和甲醇透过的影响。主要结果如下:1.采用离子交换还原法在Nafionll7膜内部沉积纳米把粒子,制备成高聚物电解质复合膜。研究了镀把前后Nafion膜表面形态、甲醇透过和膜的电导的变化和对直接甲醇燃料电池的性能的影响等。由于把纳米粒子阻碍了甲醇透过,同时,由于它对氢离子的强吸引力,不但不对氢离子的透过产生影响,而且还提高了膜佩狗电导。所以镀把后电解质膜的甲醇透过减少,膜电导增加,无论在低电流密度区还是在高电流密度区,电池性能都有效地提高。2.研究了一种制备高分散性铂基催化剂的新方法一预沉淀还原法。并采用TEM,XRD和电化学等技术来表征催化剂中铂的粒径、晶态结构和催化活性:与传统的化学还原法相比,因为该方法在化学还原过程中反应物与载体的作用力得到增强,所以采用该方法制备的催化剂铂分散性更好、晶态结构更低、粒径更小并且催化活性更好。该方法在直接甲醇燃料一电池中有应用价值。3.研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,对电池性能和甲醇透过的影响。研究发现当电池运行温度增加时,电池性能提高,甲醇透过增加;甲醇浓度增加时,甲醇透过增加,但是,甲醇浓度对电池性能有不同的影响,在低甲醇浓度区,甲醇浓度增加,电池性能提高;在高甲醇浓度区,甲醇浓度增加,电池性能降低;存在一个最佳甲醇浓度,在该甲醇浓度的条件下,电池的性能最高。实验结果为:采用Nafion117膜时,电池的最佳甲醇浓度为2. 0 mol/L,采用镀把Nafion117膜时,电池的最佳甲醇浓度高于4.0 mol/Lo
Resumo:
Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.
Resumo:
Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90degreesC shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
It is indispensable to remove CO at the level of less than 50ppm in H-2-rich feed gas for the proton exchange membrane (PEM) fuel cells. In this paper, catalyst with high activity and selectivity, and a microchannel reactor for CO preferential oxidation (PROX) have been developed. The results indicated that potassium on supported Rh metal catalysts had a promoting effect in the CO selective catalytic oxidation under H-2-rich stream, and microchannel reactor has an excellent ability to use in on-board hydrogen generation system. CO conversion keeps at high levels even at a very high GHSV as 500 000 h(-1), so, miniaturization of hydrogen generation system can be achieved by using the microchannel reactor. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Highly active PtSn/C catalyst was prepared by a polyol method. The catalyst was reduced in H-2/Ar atmosphere at 600 degreesC for 2 h in order to obtain different metallic phase. TEM images show uniform dispersion of spherical metal nanoparticles with average diameters of 1.8 and 3.9 nm for the as-prepared and treated catalysts, respectively. UV-vis spectrophotometry is employed to monitor the preparation process and the results indicate that Pt-Sn complex formed once the precursors of Pt and Sn were mixed together. The structure properties of the samples were characterized using X-ray diffraction. The results show that after reduction, the catalyst tends to form PtSn alloy. TPR experiment results show that Sn exists in multivalent state in the as-prepared sample while only zero-valence Sn was detected in the treated sample, while it could not be excluded that the multivalent tin existed in the treated sample. Cyclic voltammetry (CV) technique and single direct ethanol fuel cell (DEFC) tests indicate that the as-prepared catalyst possesses superior catalytic activity for ethanol oxidation to the treated sample. The results suggest that Pt and multivalent Sn are the active species for ethanol oxidation. (C) 2004 Elsevier B.V. All rights reserved.