157 resultados para FLUID INCLUSIONS
Resumo:
The East Shandong gold province is located on the southeastern margin of the North China Craton and features uplift in the north and depression in the south. The uplift area is made up of the Archaean Jiaodong Group, the Proterozoic Jingshan Group and Yanshannian granites. Most gold deposits in the uplift area are spatially associated with the Yanshannian granites. Two types of gold mineralization occur in the region: the quartz-vein type hosted in the Linglong granite suite, and the shear zone type hosted by either the Linglong granite or Guojialing granitoid suites. The mineralization ages are 113~126 Ma. The southern part of East Shandong contains the Mesozoic Jiaolai basin, which formed during regional extension. The basin is bounded by the Wulian-Rongcheng fault in the southeast and the Tanlu fault in the west. The Pengjiakuang, Fayunkuang and Dazhuangzi gold deposit occurs on the northeastern margin of the basin. The mineralization ages of these deposits are 110~128 Ma. This paper focuses on a low-angle detachment fault developed between the Proterozoic Jingshan Group metamorphic complex and the northeastern margin of the basin. Our field work shows that the distribution of the Pengjiakuang gold deposit was controlled by the detachment fault. Moreover, the Fayunkuang, Guocheng and Liaoshang gold deposits also occurr in the periphery of the basin, and their features are similar to Pengjiakuang gold deposit. The study of geological geochemistry of the gold deposits has shown: ①three-type gold deposit was situated in the Jiaodong area, including altered rock type (Jiaojia type), quartz vein type (Linglong type) and breccia type (Pengjiakuang type); the ore-forming materials and fluid for Pengjiakuang type gold deposit shows multiple source; ②the ore materials of Jiaojia and Linglong type deposits are mainly from deep source. The author has studied geological-geochemical dynamics of three types deposits in Jiaodong area. The study of tectonic dynamics shows that ore-forming structure differential stress values of Pengjiakuang gold deposit is 100 * 10~6~130 * 10~6 Pa, and that of Jiaojia gold deposit is 100 * 10~5~194 * 10~6 Pa. Dynamics of hydrothermal ore-forming fluid has also been studied in this paper. Author applies Bernoulli equation to dynamic model of hydrothermal fluid motion in brittle fracture and cracks (quartz vein type gold mineralization), and applies Darcy law to dynamic model of hydro thermal fluid motion in porous medium (altered rock type gold mineralization). Author does daring try in order to study quantitativly transport mechanism of hydrothermal ore-forming fluid in this paper. The study of fluid inclusions and crystal dynamics shows that reaction system of hydrothermal ore-forming includes three types, as follows: ore-forming reaction, controlling reaction and buffer controlling reaction. They depend on each other, controlling each other, which form a organic system. Further research shown that formation of ore shoots was controlled by coincidence processes of tectonic dynamic condition and thermodynamic evolution. This paper has summaried reginoal metallogenic laws and seted up metallogenic(dynamics) models for Jiaodong gold ore belt.
Resumo:
This paper studied the metallotectonics, altered rocks, altered minerals and fluid inclusions. The conclusions are: (1)The gold deposits in Jiaodong district were formed quickly uplifted tectonic setting which was induced by the Mantle doming in Mesozoic era. (2)Both Jiaojia-type and Linglong-type gold mineralizations were formed in the same tectonic-fluid system. (3) The Ar-Ar age of the earlier stage of the gold mineralization is 114~116Ma. (4)The development of the plaiting ore-control tectonic system underwent four stagesrcounterclockwise ductile compresso-shearing, clockwise brittle tenso-shearing and counterclockwise brittle compresso-shearing and brittle normal faulting after mineralization. (5)The mineralization has five stages: quartz and k-feldspar stage, quartz and ferro-carbonate and pyrite stage, quartz and chalcopyrite stage, pyrite and sericite and quartz stage and carbonate stage, and they make up four ore-types: red ore, vein ore, mottled ore and grey ore. (6) The features of mineralizations and ore-forming fluids in different stages are different. But the ore-forming fluids are rich in Si, Fe, P_2O_5, H_2O, CO_2, SO_4~(2-), K~+, Na~+, Ca~(2+) and Cl~- in general and their salinities are from 4 to 18 NaClwt%. (7) The ore-forming fluids came mainly from the Mantle in early stage, then mainly from magma, and mainly from meteoric water in the last stage. (8) Au in the ore-forming fluid was mainly carried in the form of complex of Au and S. (9)The temperature of ore-forming fluid is from 350℃ to 120℃and its pressure is from 20MPa to 38MPa. (10)The gold vein composed by quartz, ferro-carbonate, chalcopyrite and pyrite (vein ore) was filled in the tensional fracture in the top of the magma dome. The disseminated ore bodies composed by pyrite, sericite and quartz (grey ore) was metasomatized in the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, which is placed in the flank top of magma dome. In the joint and fracture induced by the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, veiniet and stockwork ore (red ore) and veinlet-disseminated ore (mottled ore) composed by quartz and pyrite was formed. (ll)Fluid boiling maybe one of the form of the ore-forming substances precipitation.
Resumo:
The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.
Resumo:
The Xiangshan U deposit, the largest hydrothermal U deposit in China, is hosted in late Jurassic felsic volcanic rocks although the U mineralization post dates the volcanics by at least 20 Ma. The mineralization coincides with intrusion of local mantle-derived mafic dykes formed during Cretaceous crustal extension in South China. Ore-forming fluids are rich in CO2, and U in the fluid is thought to have been dissolved in the form of UO2 (CO3)22− and UO2 (CO3) 34− complexes. This paper provides He and Ar isotope data of fluid inclusions in pyrites and C isotope data of calcites associated with U mineralization (pitchblende) in the Xiangshan U deposit. He isotopic compositions range between 0.1 and 2.0Ra (where Ra is the 3He/4He ratio of air=1.39×10−6) and correlates with 40Ar/36Ar; although there is potential for significant 3He production via 6Li(n,α)3H(β)3He reactions in a U deposit (due to abundant neutrons), nucleogenic production cannot account for either the 3He concentration in these fluids, nor the correlations between He and Ar isotopic compositions. It is more likely that the high 3He/4He ratios represent trapped mantle-derived gases. A mantle origin for the volatiles of Xiangshan is consistent with the δ13C values of calcites, which vary from −3.5‰ to −7.7‰, overlapping the range of mantle CO2. The He, Ar and CO2 characteristics of the ore-forming fluids responsible for the deposit are consistent with mixing between 3He- and CO2-rich mantle-derived fluids and CO2-poor meteoric fluids. These fluids were likely produced during Cretaceous extension and dyke intrusion which permitted mantle-derived CO2 to migrate upward and remobilize U from the acid volcanic source rocks, resulting in the formation of the U deposit. Subsequent decay of U within the fluid inclusions has reduced the 3He/4He ratio, and variations in U/3He result in the range in 3He/4He observed with U/3He ratios in the range 5–17×103 likely corresponding to U concentrations in the fluids b0.2 ppm.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.
Resumo:
The multi-layers feedforward neural network is used for inversion of material constants of fluid-saturated porous media. The direct analysis of fluid-saturated porous media is carried out with the boundary element method. The dynamic displacement responses obtained from direct analysis for prescribed material parameters constitute the sample sets training neural network. By virtue of the effective L-M training algorithm and the Tikhonov regularization method as well as the GCV method for an appropriate selection of regularization parameter, the inverse mapping from dynamic displacement responses to material constants is performed. Numerical examples demonstrate the validity of the neural network method.
Resumo:
Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.
Resumo:
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.
Resumo:
The transition process of intermittent flow in a longitudinal section of Bingham fluid from initial distribution to fully developed state was numerically investigated in this paper. The influences of slope dimensionless runoff Q* and viscosity μ0* on the dimensionless surge speed U* were also presented in a wide range of parameters. By one typical example, the intermittent flow possessed wave characteristics and showed a supercritical flow conformation for a fully developed flow. The distributions of gravity and bed drag along the flow path and the velocity distribution of flow field were also analyzed.
Resumo:
Liu Qingquan, Singh V.P
Resumo:
Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.
Two Bifurcation Transition Processes in Floating Half Zone Convection of Larger Prandtl Number Fluid
Resumo:
Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.
Resumo:
An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.