25 resultados para Extreme Loads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Key Research and Development Program [2010CB833502]; National Natural Science Foundation of China [30600071, 40601097, 30590381]; Chinese Academy of Sciences [KZCX2-YW-432, O7V70080SZ, LENOM07LS-01]; GUCAS [O85101PM03]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two supramolecular assemblies of p-sulfonato-calix[8]arene were stacked by some infinite 1D 'molecular capsule' chains in which the calixarenes adopt an unprecedented 1,2,3,4-alternate double cone conformation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review presents recent developments of electrochemical biosensors in extreme working environments. After a brief introduction to the electrochemical biosensor, the applications of biocatalytic biosensors and bioaffinity biosensors in harsh working conditions, in organic solvent, in gas-phase, in vivo measurement and in toxic environments, are discussed by means of several examples. Methods for improving the stability and extending the biosensor application scope are suggested, and new trends about biosensor development are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigating the interplay between continental weathering and erosion, climate, and atmospheric CO2 concentrations is significant in understanding the mechanisms that force the Cenozoic global cooling and predicting the future climatic and environmental response to increasing temperature and CO2 levels. The Miocene represents an ideal test case as it encompasses two distinct extreme climate periods, the Miocene Climatic Optimum (MCO) with the warmest time since 35 Ma in Earth's history and the transition to the Late Cenozoic icehouse mode with the establishment of the east Antarctic ice sheet. However the precise role of continental weathering during this period of major climate change is poorly understood. Here we show changes in the rates of Miocene continental chemical weathering and physical erosion, which we tracked using the chemical index of alteration ( CIA) and mass accumulation rate ( MAR) respectively from Ocean Drilling Program (ODP) Site 1146 and 1148 in the South China Sea. We found significantly increased CIA values and terrigenous MARs during the MCO (ca. 17-15 Ma) compared to earlier and later periods suggests extreme continental weathering and erosion at that time. Similar high rates were revealed in the early-middle Miocene of Asia, the European Alps, and offshore Angola. This suggests that rapid sedimentation during the MCO was a global erosion event triggered by climate rather than regional tectonic activity. The close coherence of our records with high temperature, strong precipitation, increased burial of organic carbon and elevated atmospheric CO2 concentration during the MCO argues for long-term, close coupling between continental silicate weathering, erosion, climate and atmospheric CO2 during the Miocene. Citation: Wan, S., W. M. Kurschner, P. D. Clift, A. Li, and T. Li (2009), Extreme weathering/ erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea, Geophys. Res. Lett., 36, L19706, doi: 10.1029/2009GL040279.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.