19 resultados para Extensional events


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the intermediate-complexity Zebiak-Cane model, we investigate the 'spring predictability barrier' (SPB) problem for El Nino events by tracing the evolution of conditional nonlinear optimal perturbation (CNOP), where CNOP is superimposed on the El Nino events and acts as the initial error with the biggest negative effect on the El Nino prediction. We show that the evolution of CNOP-type errors has obvious seasonal dependence and yields a significant SPB, with the most severe occurring in predictions made before the boreal spring in the growth phase of El Nino. The CNOP-type errors can be classified into two types: one possessing a sea-surface-temperature anomaly pattern with negative anomalies in the equatorial central-western Pacific, positive anomalies in the equatorial eastern Pacific, and a thermocline depth anomaly pattern with positive anomalies along the Equator, and another with patterns almost opposite to those of the former type. In predictions through the spring in the growth phase of El Nino, the initial error with the worst effect on the prediction tends to be the latter type of CNOP error, whereas in predictions through the spring in the decaying phase, the initial error with the biggest negative effect on the prediction is inclined to be the former type of CNOP error. Although the linear singular vector (LSV)-type errors also have patterns similar to the CNOP-type errors, they cover a more localized area than the CNOP-type errors and cause a much smaller prediction error, yielding a less significant SPB. Random errors in the initial conditions are also superimposed on El Nino events to investigate the SPB. We find that, whenever the predictions start, the random errors neither exhibit an obvious season-dependent evolution nor yield a large prediction error, and thus may not be responsible for the SPB phenomenon for El Nino events. These results suggest that the occurrence of the SPB is closely related to particular initial error patterns. The two kinds of CNOP-type error are most likely to cause a significant SPB. They have opposite signs and, consequently, opposite growth behaviours, a result which may demonstrate two dynamical mechanisms of error growth related to SPB: in one case, the errors grow in a manner similar to El Nino; in the other, the errors develop with a tendency opposite to El Nino. The two types of CNOP error may be most likely to provide the information regarding the 'sensitive area' of El Nino-Southern Oscillation (ENSO) predictions. If these types of initial error exist in realistic ENSO predictions and if a target method or a data assimilation approach can filter them, the ENSO forecast skill may be improved. Copyright (C) 2009 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The economic loss caused by the storm surge disasters is much higher than that caused by any other marine disaster in China, the loss from the severe storm surge disaster being the highest. Statistics show that there were 62 typhoon landings over the east-southeast coast of China since 1990, three of which, occurring in 1992, 1994 and 1997, respectively, caused the most severe damage. The direct economic losses due to these events are 9.3, 17.0 and 30 billion yuan (RMB, or about 1.7, 2.6 and 3.8 billion USD, respectively), which is much greater than the loss of 5.5 billion yuan (RMB) on an average every year during the 1989-1991 period. This paper makes a comparative analysis of the damage caused by the three events and presents an overview of progress of precautions against storm surge disaster in China. The suggested counter measures to mitigate the loss from the severe storm surge disasters in China is as follows: (1) Raise the whole society awareness of precaution against severe storm surge disaster; (2) Work out a new plan for building sea walls; (3) Improve and perfect the available warning and disaster relief command system; (4) Develop the insurance service in order to promptly mitigate the loss caused by severe storm surge disaster event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the detailed analyses of Mesozoic tectono-stratigraphy and basin formation dynamic mechanism and the styles of different units in the western margin of Ordos Basin(Abbreviated to "the western margin"), while some issues of the pre-Mesozoic in the western margin and central part of Ordos Basin also be discussed, the main views and conclusion as follows: 1. There are three types of depositional systems which are related with syndepositional tectonic actions and different tectonic prototype basins, including: alluvial fan systems, river system (braided river system and sinuosity river system), lacustrine-river delta system and fan delta system. They have complex constitutions of genetic facies. For the tectonic sequence VI, the fan sediments finning upper in the north-western margin and coarse upper in the south-western margin respectively. 2. In order to light the relationship between basin basement subsidence rate and sediment supply and the superposed styles, five categories of depositional systems tracts in different prototype basins were defined: aggrading and transgressive systems tracts during early subsidence stage, regressive and aggrading systems tracts during rapid subsidence, upper transgessive systems tracts during later subsidence stage. Different filling characteristics and related tectonic actions in different stages in Mesozoic period were discussed. 3. In order to determined the tectonic events of the provenance zones and provenance strata corresponding to basins sediments, according the clastics dispersal style and chemical analyses results of sediments in different areas, the provenance characteristics have been described. The collision stage between the "Mongolia block" and the north-China block may be the late permian; The sediments of Mesozoic strata in the north-western margin is mainly from the Alex blocks and north-Qilian Paleozoic orogeny, while the south-western margin from Qinling orogeny. The volcanic debris in the Yan'an Formation may be from the arc of the north margin of north-China block, although more study needed for the origin of the debris. The provenance of the Cretaceous may be from the early orogeny and the metamorphic basement of Longshan group. 4. The subsidence curve and subsidence rate and sedimentary rate in different units have been analyzed. For different prototype basin, the form of the subsidence curves are different. The subsidence of the basins are related with the orogeny of the basins.The beginning age of the foreland basin may be the middle Triassic. The change of basement subsidence show the migration of the foredeep and forebulge into the basin. The present appearance of the Ordos basin may be formed at the late stage of Cretaceous, not formed at the late Jurassic. 5. The structure mode of the west margin is very complex. Structure transfer in different fold-thrust units has been divided into three types: transfer faults, transition structures and intersected form. The theoretic explanations also have been given for the origin and the forming mechanism. The unique structure form of Hengshanpu is vergent west different from the east vergence of most thrust faults, the mechanism of which has been explained. 6. In Triassic period, the He1anshan basin is extensional basin while the Hengshanbu is "forland", and the possible mechanism of the seemingly incompatible structures has been explained. First time, the thesis integrate the Jurassic—early Cretaceous basins of west margin with the Hexi corridor basins and explain the unitive forming mechanism. The model thinks the lateral extrusion is the main mechanism of the Hexi corridor and west margin basins, meanwhile, the deep elements and basement characters of the basins. Also, for the first time, we determine the age of the basalt in Helanshan area as the Cretaceous period, the age matching with the forming of the Cretaceous basins and as the main factor of the coal metamorphism in the Helanshan area. 7. The Neoprotterozoic aulacogen is not the continuation of the Mesozoic aulacogen, while it is another new rift stage. In the Paleozoic, the Liupanshan—southern Helanshan area is part of the back-arc basins of north Qilian ocean. 8. The Helanshan "alacogen" is connected with the north margin of north China block, not end at the north of Zhouzishan area like "appendices". Also, I think the upper Devonian basin as the beginning stage of the extensional early Carboniferous basins, not as a part of the foreland basins of Silurian period, not the collision rift. 9. The controlling factor of the difference of the deformation styles of the north-west margin and the south-west margin is the difference of the basements and adjacent tectonic units of the two parts.