154 resultados para Exponential Sorting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is presented of the mechanics of microscale adhesion in microelectromechanical systems (MEMS). Some governing dimensionless numbers such as Tabor number, adhesion parameter and peel number for microscale elastic adhesion contact are discussed in detail. The peel number is modified for the elastic contact between a rough surface in contact with a smooth plane. Roughness ratio is introduced to characterize the relative importance of surface roughness for microscale adhesion contact, and three kinds of asperity height distributions are discussed: Gaussian, fractal, and exponential distributions. Both Gaussian and exponential distributions are found to be special cases of fractal distribution. Casimir force induced adhesion in MEMS, and adhesion of carbon nanotubes to a substrate are also discussed. Finally, microscale plastic adhesion contact theory is briefly reviewed, and it is found that the dimensionless number, plasticity index of various forms, can be expressed by the roughness ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a flume experiment of flow and sediment movement in a cavity. The flow velocity, sediment concentration and the mechanism of hydraulic sorting in the circulation flow are discussed. The quantity and patterns of sediment deposition in the circulation area are studied as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The particulate matter concentration above the seabed is usually assumed to decrease with height, following an exponential or Rouse profile. Many particulate matter concentration profiles with a peak were found on the North Mediterranean bottom water at a few tens of metres above the bottom. A particle size signal at the same altitude was found in this area and on the New York Eight shelf. It is assumed that this unexpected shape is due to a cloud of resuspended cohesive sediments originating from an impulse resuspension process. A simplified three-dimensional numerical model is proposed to describe the behaviour of resuspended particulate matter that originates from a sediment impulse vertically injected in the bottom water. This model reproduces the concentration profile shape observed, and it gives indications concerning the length and time characteristics of such a cloud, depending on the water velocity and bottom boundary layer properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrostatic interactions between nearest-neighbouring chondroitin sulfate glycosaminoglycan (CS-GAG) molecular chains are obtained on the bottle brush conformation of proteoglycan aggrecan based on an asymptotic solution of the Poisson-Boltzmann equation the CS-GAGs satisfy under the physiological conditions of articular cartilage. The present results show that the interactions are associated intimately with the minimum separation distance and mutual angle between the molecular chains themselves. Further analysis indicates that the electrostatic interactions are not only expressed to be purely exponential in separation distance and decrease with the increasing mutual angle but also dependent sensitively on the saline concentration in the electrolyte solution within the tissue, which is in agreement with the existed relevant conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow characteristics of liquids in microtubes driven by a high pressure ranging from 1 MPa to 30 MPa are studied in this paper. The diameter of the microtube is from 3 μm to 10 μm and liquids composed of simple small molecules are chosen as the working fluids. The Reynolds number ranges from 0. 1 to 24. The behavior of isopropanol and carbon tetrachloride under high pressure is found different from the prediction from conventional Hagen-Poiseuille (HP) equation. The normalized friction coefficient C* increases significantly with the pressure. From an analysis of the microtube deformation, liquid compressibility, viscous heating and wall slip, it may be seen that the viscosity at high pressure plays an important role here. An exponential function of viscosity vs pressure is introduced into the HP equation to counteract the difference between experimental and theoretical values. However, this difference is not so marked for di-water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the PDPA (Phase Doppler Particle Analyzer) measurement technology, the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function, and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28 degrees and 39 degrees, and the mean lift-off angle ranges from 30 degrees to 44 degrees. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11, and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew, the horizontal velocity of particles at 20 mm height varies widely, and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phase relaxation model (PRM) for 2-phase flows is presented in this paper on the basis of three principal assumptions. The basic equations for PRM arc derived from the Boltzmann equations for gas-partlcle mixture, The general characteristics and solving process of the PRM's basic equations are also presented and discussed. Many terms in the PRM's basic equations contain a factor ε= ρgρp/ρg+ρp2 which is an intrinsic small parameter for 2-phase mixture, with ρg and ρp being respectively the densities of gas and particle phases.This makes it possible to simplify the computation of the PRM's basic equations. The model is applied to for example, studying file steady propagation of shock waves in gas-particle mixture. The analysis shows that with an increase of shock wave strength the relaxation process behind a gasdynamics shock front becomes a kind of dynamics relaxation instead of the standard exponential relaxation process. A method of determining experimentally the velocity and tem...更多perature relaxation rates (or times) of gas-particle flows is suggested and analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对非线性系统提出了任意阶隐式指数时程差分多步法 ,实现了任意阶次指数时程差分预测 校正算法 .发展完善了指数时程差分法 .将新算法应用于非线性系统 ,取得了较好的效果 .数值结果表明隐式指数时程差分多步法很好地修正了显式指数时程差分多步法 ,隐式指数时程差分多步法是一种高精度、高效率的方法

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focusing particles into a tight stream is usually a necessary step prior to separating and sorting them. We present herein a proof-of-concept experiment of a novel particle focusing technique in DC electrokinetic flow through a planar serpentine microchannel. This focusing stems from the cross-stream dielectrophoretic motion induced within the channel turns. The observed particle focusing behavior is consistent with the predicted particle trajectories from a numerical modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vortex dislocations in wake-type flow induced by three types of spanwise disturbances superimposed on an upstream velocity profile are investigated by direct numerical simulations. Three distinct modes of vortex dislocations and flow transitions have been found. A local spanwise exponential decay disturbance leads to the appearance of a twisted chainlike mode of vortex dislocation. A stepped spanwise disturbance causes a streamwise periodic spotlike mode of vortex dislocation. A spanwise sinusoidal wavy disturbance with a moderate waviness causes a strong unsteadiness of wake behavior. This unsteadiness starts with a systematic periodic mode of vortex dislocation in the spanwise direction followed by the spanwise vortex shedding suppressed completely with increased time and the near wake becoming a steady shear flow. Characteristics of these modes of vortex dislocation and complex vortex linkages over the dislocation, as well as the corresponding dynamic processes related to the appearance of dislocations, are described by examining the variations of vortex lines and vorticity distribution. The nature of the vortex dislocation is demonstrated by the substantial vorticity modification of the spanwise vortex from the original spanwise direction to streamwise and vertical directions, accompanied by the appearance of noticeable vortex branching and complex vortex linking, all of which are produced at the locations with the biggest phase difference or with a frequency discontinuity between shedding cells. The effect of vortex dislocation on flow transition, either to an unsteady irregular vortex flow or suppression of the Kaacutermaacuten vortex shedding making the wake flow steady state, is analyzed. Distinct similarities are found in the mechanism and main flow phenomena between the present numerical results obtained in wake-type flows and the experimental-numerical results of cylinder wakes reported in previous studies.