17 resultados para Experimental treatment
Resumo:
in order to investigate a new method of mitigating the deleterious effect of harmful algal blooms (HABs), the inhibition of the glycolipid biosurfactant sophorolipid on three common harmful algae Alexandrium tamarense, Heterosigma akashiwo and Cochlodinium polykrikoides was studied. The optimum preparation condition for sophorolipid, the inhibition capability of sophorolipid and the interaction mechanism of sophorolipid on the three algal species were investigated. Results showed that sophorolipid prepared by extraction with ethyl acetate exhibited the most prominent inhibition effect and that storage time of one year had little influence on the inhibition effect of sophorolipid. The optimum concentration of 10-20 mg/l sophorolipid inhibited the motility of about 90% of the tested harmful algal cells without recovery. Investigation of the algicidal process revealed that sophorolipid induced ecdysis of A. tamarense, quick lysis of H. akashiwo and swelling of C. polykrikoides in a relatively short time. Investigation of the nucleotides showed that more than 15% of the nucleotides were released from the cytoplasm under the effect of 10-20 mg/l sophorolipid, indicating the irreversible damage on the cellular membrane, which resulted in the disintegration of the harmful algal cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.