150 resultados para Euler, Leonhard, 1707-1783
Resumo:
To improve the quality of driving flows generated with detonation-driven shock tunnels operated in the forward-running mode, various detonation drivers with specially designed sections were examined. Four configurations of the specially designed section, three with different converging angles and one with a cavity ring, were simulated by solving the Euler equations implemented with a pseudo kinetic reaction model. From the first three cases, it is observed that the reflection of detonation fronts at the converging wall results in an upstream-traveling shock wave that can increase the flow pressure that has decreased due to expansion waves, which leads to improvement of the driving flow. The configuration with a cavity ring is found to be more promising because the upstream-traveling shock wave appears stronger and the detonation front is less overdriven. Although pressure fluctuations due to shock wave focusing and shock wave reflection are observable in these detonation-drivers, they attenuate very rapidly to an acceptable level as the detonation wave propagates downstream. Based on the numerical observations, a new detonation-driven shock tunnel with a cavity ring is designed and installed for experimental investigation. Experimental results confirm the conclusion drawn from numerical simulations. The generated driving flow in this shock tunnel could maintain uniformity for as long as 4 ms. Feasibility of the proposed detonation driver for high-enthalpy shock tunnels is well demonstrated.
Resumo:
首先应用修正的激波CCW关系式分析了激波和爆轰波会聚过程及其化学反应的影响, 得到了初始Mach数相同条件下激波聚焦效果比爆轰波强的定性结论. 然后求解Euler方程和基元化学反应模型对环形激波和爆轰波的会聚过程进行了数值模拟, 分析了会聚过程的气体动力学特性、波系结构的差异及其产生原因. 通过对波绕射、会聚和聚焦点附近状态参数变化的对比分析, 揭示了爆轰波化学反应在绕射和会聚不同阶段所起的作用, 验证了理论分析结果.
Resumo:
建立了红壤农田水热动态耦合模式,分析了模式中温度变化与水分运动分层的物理原因,说明了气候状况对地表面能量交换的 影响,给出了净辐射和蒸散量的计算方法,提出了有限差分计算中具有二阶精度的Euler隐式格式,介绍了红壤站的气候概况和野外观 测情况.最后利用本模式对红壤花生地陆气水热交换过程进行了数值模拟,模拟值与实测值吻合较好.
Resumo:
A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.
Resumo:
An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.
Resumo:
在计算机发达的时代,高雷诺(Re)数绕流计算中有无必要使用简化NS方程组,本文讨论这个问题.主要内容如下:(1)高Re数绕流包含3种基本流动:所有方向对流占优流动、所有方向对流扩散竞争流动和部分方向对流占优部分方向对流扩散竞争流动(简称干扰剪切流动),3个基本流动的特征彼此不同且在流场中所占领域大小彼此相差悬殊,NS方程区域很小,它们的最简单控制方程组Euler、Navier-Stokes(NS)和扩散抛物化(DP)NS方程组的数学性质彼此不同,因此利用Euler-DPNS-NS方程组体系分析计算高Re数绕流流动就是一个合乎逻辑的选择,该法与利用单一NS方程组的常用方法可以彼此检验和补充.(2)流体之间以及流体与外界的动量、能量和质量交换,流态从层流到湍流的演化主要发生在干扰剪切流动中,干扰剪切流及其最简单控制方程--DPNS方程组具有基础意义;DPNS方程组笔者在1967年已提出.(3)诸简化NS方程组:DPNS、抛物化(P)NS、薄层(TL)NS、黏性层(VL)NS方程组的发展、相互关系,它们的历史贡献和今后的用途;它们的数学性质均为扩散抛物型,但它们包含的黏性项彼此有所不同;从流体力学角度来看,它们中只有DPNS方程组能够准确描述干扰剪切流动.提出把诸简化NS方程组统一为DPNS方程组的建议.(4)干扰剪切流--DPNS方程组与无干扰剪切流--边界层方程组之间的关系以及进一步研究干扰剪切流的意义.
Resumo:
研究多孔材料填充薄壁结构的相互作用效应产生的机理,并建立了表征模型.以泡沫铝填充帽形结构为例,发现压溃的填充物分为致密区、过致密区和未变形区3个区域.基于理想可压缩假设建立了填充多孔材料分析模型,获得各区域体积变化和等效应变等关系;结合薄壁结构超叠缩单元模型,对填充结构各组分的能量吸收进行了拆分.研究表明,薄壁结构的吸能略有增加,多孔材料的吸能增加40%左右.过致密区的形成是相互作用效应的主要原因.
Resumo:
基于岩石力学与渗流力学理论,考虑到油藏中多相渗流的特点以及渗流与应力的耦合效应,建立了油藏多相渗流与应力耦合分析模型,研究了渗流与应力的耦合规律,给出了实现耦合分析的方法与步骤,最后通过算例检验了耦合分析的有效性和实用价值。
Resumo:
本文采用数值模拟的方法研究油水混合物在直管和螺旋管中的流动状况.计算采用Euler-Euler法和Euler模型:支配油水分离两相流动的基本方程包括连续方程和动量方程,湍流模型采用多相流中混合型k-ε模式,基本方程的离散和求解采用SIMPLE算法.利用Fluent软件,以直管和螺旋管为例进行了计算,获得了初步计算结果.计算表明,本文所用方法可以较好地模拟直管中油水在重力作用下的分离,以及螺旋分离器中油水在重力和离心力共同作用下的分离现象.并可为实验研究提供参考。
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
应用频散可控耗散差分格式,求解具有化学反应项的Euler方程,探讨了热射流起爆可燃混合气缩短DDT过程的物理机制.数值研究模拟了不同条件下的起爆过程,从氢氧链式反应出发详细分析了氢氧爆轰直接起爆的SWACER(能量释放而形成激波或压缩波的相干放大)机制的建立条件,讨论了热射流起爆存在超临界、临界和亚临界三种直接起爆机制.
Resumo:
应用DCD频散控制激波捕捉格式,求解二维、多组分、带有化学反应的Euler方程组,数值模拟了准定常强激波的马赫反射问题。研究结果表明:与经典马赫反射理论相比,在强激波条件下,激波诱导的气体分子振动激发和化学反应使马赫反射的三波点轨迹角变小、马赫杆高度变低、楔顶附体激波倾角变小;马赫杆的相对突出量随入射激波马赫数和楔角的增大而增大,而气体分子的振动、离解等真实气体效应能进一步加剧马赫杆的向前突出。
Resumo:
An improved two-dimensional space-time conservation element and solution element ( CE/ SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman-Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.
Resumo:
Cylindrical cellular detonation is numerically investigated by solving two-dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.
Resumo:
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.