69 resultados para Erythropoietin Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Associations have been reported of the seven-repeat (7R) allele of the human dopamine receptor D4 (DRD4) gene with both attention-deficit/hyperactivity disorder and the personality trait of novelty seeking. This polymorphism occurs in a 48-bp tandem repea

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity and evolution of bitter taste perception in mammals is not well understood. Recent discoveries of bitter taste receptor (T2R) genes provide an opportunity for a genetic approach to this question. We here report the identification of 10 and 30 putative T2R genes from the draft human and mouse genome sequences, respectively, in addition to the 23 and 6 previously known T2R genes from the two species. A phylogenetic analysis of the T2R genes suggests that they can be classified into three main groups, which are designated A, B, and C. Interestingly, while the one-to-one gene orthology between the human and mouse is common to group B and C genes, group A genes show a pattern of species- or lineage-specific duplication. It is possible that group B and C genes are necessary for detecting bitter tastants common to both humans and mice, whereas group A genes are used for species-specific bitter tastants. The analysis also reveals that phylogenetically closely related T2R genes are close in their chromosomal locations, demonstrating tandem gene duplication as the primary source of new T2Rs. For closely related paralogous genes, a rate of nonsynonymous nucleotide substitution significantly higher than the rate of synonymous substitution was observed in the extracellular regions of T2Rs, which are presumably involved in tastant-binding. This suggests the role of positive selection in the diversification of newly duplicated T2R genes. Because many natural poisonous substances are bitter, we conjecture that the mammalian T2R genes are under diversifying selection for the ability to recognize a diverse array of poisons that the organisms may encounter in exploring new habitats and diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divergence of proteins in signaling pathways requires ligand and receptor coevolution to maintain or improve binding affinity and/or specificity. In this paper we show a clear case of coevolution between the prolactin (PRL) gene and its receptor (prolactin receptor, PRLR) in mammals. First we observed episodic evolution of the extracellular and intracellular domains of the PRLR, which is closely consistent with that seen in PRL. Correlated evolution was demonstrated both between PRL and its receptor and between the two domains of the PRLR using Pearson's correlation coefficient. On comparing the ratio of the nonsynonymous substitution rate to synonymous substitution rate (omega=d(N)/d(S)) for each branch of the star phylogeny of mammalian PRLRs, separately for the extracellular domain (ECD) and the transmembrane domain/intracellular domain (TMD/ICD), we observed a lower omega ratio for ECD than TMD/ICD along those branches leading to pig, dog and rabbit but a higher ratio for ECD than TMD/ICD on the branches leading to primates, rodents and ruminants, on which bursts of rapid evolution were observed. These observations can be best explained by coevolution between PRL and its receptor and between the two domains of the PRLR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pheromones are chemicals produced and detected by conspecifics to elicit social/sexual physiological and behavioral responses, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Two large superfamilies of G protein-coupled receptors, V1rs and V2rs, have been identified as pheromone receptors in vomeronasal sensory neurons. Based on a computational analysis of the mouse and rat genome sequences, we report the first global draft of the V2r gene repertoire, composed of similar to 200 genes and pseudogenes. Rodent V2rs are subject to rapid gene births/deaths and accelerated amino acid substitutions, likely reflecting the species-specific nature of pheromones. Vertebrate V2rs appear to have originated twice prior to the emergence of the VNO in ancestral tetrapods, explaining seemingly inconsistent observations among different V2rs. The identification of the entire V2r repertoire opens the door to genomic-level studies of the structure, function, and evolution of this diverse group of sensory receptors. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pituitary growth hormone (GH) evolves very slowly in most of mammals, but the evolutionary rates appear to have increased markedly on two occasions during the evolution of primates and ruminants. To investigate the evolutionary pattern of growth hormone receptor (GHR), we sequenced the extracellular domain of GHR genes from four primate species. Our results suggested that GHR in mammal also shows an episodic evolutionary pattern, which is consistent with that observed in pituitary growth hormone. Further analysis suggested that this pattern of rapid evolution observed in primates and ruminants is likely the result of coevolution between pituitary growth hormone and its receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alzheimer's disease (AD) is a neurodegenerative disease with a higher prevalence in women. Expression of estrogen receptor 1 (ESR1) gene has been identified throughout the brain. Owing to the putative neuroprotective effects of estrogen, estro

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

下载PDF阅读器"氧糖剥夺"模型作为研究脑缺血的离体模型被广泛使用,该模型模拟了局灶性脑缺血的主要病理变化.然而在缺血病灶核心区与正常脑组织之间称为缺血半暗带的区域,脑血流也有程度不一的降低.为了模拟这种病理变化,发展了一种"不完全氧糖剥夺"的离体脑片模型,该模型满足两个条件,灌流液里氧气部分剥夺而葡萄糖含量降低;"氧糖剥夺"可以导致谷氨酸介导的兴奋性毒性,从而引起神经细胞的坏死.而A型γ-氨基丁酸受体(GABAAR)介导的神经元抑制性活动可以对抗谷氨酸引起的兴奋性毒性,因此近年来引起广泛的研究兴趣.而谷氨酸受体和γ-氨基丁酸受体功能在缺血半暗带是否有改变尚不得而知.因此本文采用海马脑片全细胞膜片钳的记录方法,研究"不完全氧糖剥夺"对海马CA1区神经元的A型γ-氨基丁酸受体介导的抑制性突触后膜电流(IPSCs)的影响.研究发现"不完全氧糖剥夺"使GABAAR介导的IPSCs的峰值增加而衰减时程延长.进一步研究发现该电流的峰值增加是由于GABAAR-氯离子通道的电导增加所致,而与氯离子的反转电位变化无关.这些发现提示在脑缺血的缺血半暗带区域GABAAR介导的神经元抑制性活动可能是增强的,这可能是神经元面对缺血状态产生自我保护的一种内稳态机制.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca2+ permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, as a result of activation of NR2B-containing N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) during ischemia. Furthermore, NR2B-specific antagonist, CaMKII inhibitor, or overexpression of mutated form of ASIC1a with Ser478 or Ser479 replaced by alanine (ASICla-S478A, ASIC1a-S479A) in cultured hippocampal neurons prevented ischemia-induced enhancement of ASIC currents, cytoplasmic Ca2+ elevation, as well as neuronal death. Thus, NMDAR-CaMKII cascade is functionally coupled to ASICs and contributes to acidotoxicity during ischemia. Specific blockade of NMDAR/CaMKII-ASIC coupling may reduce neuronal death after ischemia and other pathological conditions involving excessive glutamate release and acidosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long term potentiation in hippocampus, evoked by high-frequency stimulation, is mediated by two major glutamate receptor subtypes, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptors. Receptor subunit compos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their roles in synaptic transmission are unclear. In this study, we examined the effect of GlyR activation on paired-pulse stimulation of the whole-cell postsynaptic currents (PSCs)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their role in hippocampal function remains unclear. Since the concentration of ambient glycine is determined by the presence of powerful glycine transporter (GlyT), we blocked the r