312 resultados para Er3 -doped phosphate glass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

制备了不同含水量的掺铒磷酸盐玻璃,研究了各种工艺参数对反应气氛法除水效果的影响。结果表明由鼓泡气体带入的除水剂是玻璃除水的主要动力;在通气最初阶段的除水速率最快,并且提高除水温度、增大通气流量均有助于提高除水效率;结合实验从反应热力学角度讨论了除水机理,并指出在玻璃熔体中除水反应受熔体“笼效应”影响,反应速率大小取决于OH与CCl4形成偶遇对概率的大小。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了掺铒磷酸盐玻璃波导放大器的特性。利用重叠因子将980nm光抽运的掺铒玻璃波导放大器四能级模型的速率-传输方程进行化简,在考虑上转换效应和放大自发发射的情况下.利用数值模拟的方法,得到了掺铒玻璃波导放大器的增益与Er^3+离子浓度、抽运功率、波导长度等参量之间的关系曲线;同时模拟出放大自发发射曲线并与实验测量结果进行比较。结果表明在考虑上转换效应和放大自发发射的情况下,理论结果和实验测量结果是一致的。同时看到,选择合适的铒离子浓度是制作掺铒玻璃波导放大器的关键;并且为了全面发挥掺铒玻璃波导放大器的性能

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical loss coefficient at 1053-nm wavelength, influenced by Fe ions in N31-type Nd-doped phosphate laser glass, was determined precisely and analyzed in detail. It is found that the optical loss coefficient per unit of Fe concentration (cm^(-1)/ppmw) increases with Fe concentration in the range of 0---300 ppmw, but it approaches a constant as the Fe concentration is larger than 300 ppmw. Such a concentration effect is due to a shift in the redox equilibrium between Fe3+ and Fe2+ ions in the glass. The effect of oxygen pressure, temperature, and variable valence states of other metal ions in glass samples on the optical loss is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated absorption cross section Sigma(abs), I peak emission cross section sigma(cmi), Judd-Ofeld intensity parameters Omega(iota) ( t = 2,4,6), and spontaneous emission probability A(R) of Er3+ ions were determined for Erbium doped alkali and alkaline earth phosphate glasses. It is found the compositional dependence of sigma(emi) 5 almost similar to that of Sigma(abs), which is determined by the sum, of Omega(1) (3 Omega(2) + 10 Omega(4) + 21 Omega(6)). In addition, the compositional dependence of Omega(1) was studied in these glass systems. As a result, compared with. Omega(4) and Omega(6) the Omega(2) has a stronger compositional dependence on the ionic radius and content of modifers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, aluminate glass, and tellurate glass, since Omega(6) of phosphate glass is relatively large. A(R) is affected by the covalency of the Er3+ ion sites and corresponds to the Omega(6) value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+/Tm3+/Yb3+ tricloped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with F-4(9/2) -> I-4(15/2) and H-2(11/2), S-4(3/2) -> I-4(15/2) transition of Er3+ respectively. While the blue upconversion originates from (1)G(4) -> H-3(6) transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broadband and upconversion properties were studied in Er3+/Yb3+ co-doped fluorophosphate glasses. Large Omega(6) and S-ed/(S-ed + S-md) values and the flat gain profile over 1530-1585 nm indicate the good broadband properties of the glass system. And a premise of using Omega(6) as a parameter to estimate the broadband properties of the glasses is proposed for the first time to our knowledge. Results showed that fluorescence intensity, upconversion luminescence intensity, the intensity ratio of red/green light (656 nm/545 nm) are closely related to the Yb3+:Er3+ ratio and Er3+ concentration, and the corresponding calculated lifetime of F-4(9/2) and S-4(3/2) states for red and green upconversion samples proves this conclusion. The upconversion mechanism is also discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped oxyfluoride germanate glasses have been synthesized by the conventional melting and quenching method. The Judd-Ofelt intensity parameters were calculated based on the Judd-Ofelt theory and absorption spectra measurements. With the substitution of PbF2 for PbO, the Omega(2) parameter decreases, while the Omega(6) parameter increases. These change trends indicate that fluoride anions come to coordinate erbium cations and the covalency of the Er-O bond decreases. Structural and thermal stability properties were obtained by Raman spectra and differential thermal analysis, indicating that PbF2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energy and thermal stability of host glasses. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. With increasing PbF2 content, the intensity of red (657nm) emissions increases significantly, while that of the green (525 and 546nm) emission increases slightly. The results indicate that PbF, has more influence on the red (657nm) emission than the green (525 and 546nm) emissions in oxyfluoride germanate glasses. The possible upconversion luminescence mechanisms have also been estimated and discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel diffractive-pumping scheme is proposed to improve the evanescent amplification using blazed fiber grating for the first time. We also investigate the cw-pumped-evanescent amplification at 1.55 mu m wavelength with the relative optical gain pumped at 1480 nm of around 2 dB based on side-polished fiber with the effective interaction length as long as 16 mm and with a heavily Er3+-doped (N-Er(3+) > 1.19 x 10(21) ions/cm(3)), low refractive index (n(1550) < 1.47) glass overlay, which has no concentration quenching (tau(f) = 9.0 ms).