251 resultados para Electronic localization


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an elastic and statistically brittle (ESB) model is applied to the process of damage evolution induced catastrophic rupture and the influence of localization and softening on catastrophic rupture is discussed. According to the analysis, the uncertainty of catastrophic rupture should be attributed to the unknown scale of localized zone. Based on the elastic and statistically brittle model but local mean field approximation, the relation between the scale of localized zone and catastrophic rupture is obtained and then justified with experiments. These results can not only give a deeper understanding of the mechanism governing catastrophic rupture, but also provide a possible tool to foresee the occurrence of catastrophic rupture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the first detailed study of the mechanics and modes of adiabatic shear localization in solids, and provides a systematic description of a number of aspects of adiabatic shear banding. The inclusion of the appendices which provide a quick reference section and a comprehensive collection of thermomechanical data allows rapid access and understanding of the subject and its phenomena. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. This reference book has come about in response to the pressing demand of mechanical and metallurgical engineers for a high quality summary of the knowledge gained over the last twenty years. While fulfilling this requirement, the book is also of great interest to academics and researchers into materials performance.

Table of Contents

1Introduction1
1.1What is an Adiabatic Shear Band?1
1.2The Importance of Adiabatic Shear Bands6
1.3Where Adiabatic Shear Bands Occur10
1.4Historical Aspects of Shear Bands11
1.5Adiabatic Shear Bands and Fracture Maps14
1.6Scope of the Book20
2Characteristic Aspects of Adiabatic Shear Bands24
2.1General Features24
2.2Deformed Bands27
2.3Transformed Bands28
2.4Variables Relevant to Adiabatic Shear Banding35
2.5Adiabatic Shear Bands in Non-Metals44
3Fracture and Damage Related to Adiabatic Shear Bands54
3.1Adiabatic Shear Band Induced Fracture54
3.2Microscopic Damage in Adiabatic Shear Bands57
3.3Metallurgical Implications69
3.4Effects of Stress State73
4Testing Methods76
4.1General Requirements and Remarks76
4.2Dynamic Torsion Tests80
4.3Dynamic Compression Tests91
4.4Contained Cylinder Tests95
4.5Transient Measurements98
5Constitutive Equations104
5.1Effect of Strain Rate on Stress-Strain Behaviour104
5.2Strain-Rate History Effects110
5.3Effect of Temperature on Stress-Strain Behaviour114
5.4Constitutive Equations for Non-Metals124
6Occurrence of Adiabatic Shear Bands125
6.1Empirical Criteria125
6.2One-Dimensional Equations and Linear Instability Analysis134
6.3Localization Analysis140
6.4Experimental Verification146
7Formation and Evolution of Shear Bands155
7.1Post-Instability Phenomena156
7.2Scaling and Approximations162
7.3Wave Trapping and Viscous Dissipation167
7.4The Intermediate Stage and the Formation of Adiabatic Shear Bands171
7.5Late Stage Behaviour and Post-Mortem Morphology179
7.6Adiabatic Shear Bands in Multi-Dimensional Stress States187
8Numerical Studies of Adiabatic Shear Bands194
8.1Objects, Problems and Techniques Involved in Numerical Simulations194
8.2One-Dimensional Simulation of Adiabatic Shear Banding199
8.3Simulation with Adaptive Finite Element Methods213
8.4Adiabatic Shear Bands in the Plane Strain Stress State218
9Selected Topics in Impact Dynamics229
9.1Planar Impact230
9.2Fragmentation237
9.3Penetration244
9.4Erosion255
9.5Ignition of Explosives261
9.6Explosive Welding268
10Selected Topics in Metalworking273
10.1Classification of Processes273
10.2Upsetting276
10.3Metalcutting286
10.4Blanking293
 Appendices297
AQuick Reference298
BSpecific Heat and Thermal Conductivity301
CThermal Softening and Related Temperature Dependence312
DMaterials Showing Adiabatic Shear Bands335
ESpecification of Selected Materials Showing Adiabatic Shear Bands341
FConversion Factors357
 References358
 Author Index369
 Subject Index375

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an entanglement purification scheme for the mixed entangled states of electrons with the aid of charge detections. Our scheme adopts the electronic polarizing beam splitters rather than the controlled-NOT (CNOT) operations, but the total successful probability of our scheme can reach the quantity as large as that of the the CNOT-operation-based protocol and twice as large as that of linear-optics-based protocol for the purification of photonic entangled states. Thus our scheme can achieve a high successful prabability without the usage of CNOT operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of second-order Rayleigh-Schrodinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Frohlich's Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new pump and probe experimental system was developed, the pump pulse duration of which is stretched and is much longer than that of the probe pulse. Using this system, time-resolved electronic excitation processes and damage mechanisms in CaF2 crystals were studied. The measured reflectivity of the probe pulse begins to increase at the peak of the pump pulse and increases rapidly in the latter half of the pump pulse, when the pump pulse duration is stretched to 580fs. Our experimental results indicate that both multiphoton ionization and impact ionization play important roles in the generation of conduction band electrons, at least they do so when the pump pulse durations are equal to or longer than 580fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an atom localization scheme for a tripod-type atom making use of the sharp absorption peak resulting from interacting double-dark resonances. It is demonstrated that the probability of finding the atom at a particular position, as well as the localization precision, can be dramatically enhanced. The probability can be doubled by adjusting the Rabi frequency of the control field to the maximum Rabi frequency of the standing-wave field. Moreover, much better spatial resolution can be achieved for smaller detunings of the control and the standing-wave fields. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, single-molecule fluorescence microscopy was used to examine the characteristics of plasma membrane targeting and microdomain localization of enhanced yellow fluorescent protein (eYFP)-tagged wild-type Dok5 and its variants in living Chinese hamster ovary (CHO) cells. We found that Dok5 can target constitutively to the plasma membrane, and the PH domain is essential for this process. Furthermore, single-molecule trajectories analysis revealed that Dok5 can constitutively partition into microdomain on the plasma membrane. Finally, the potential mechanism of microdomain localization of Dok5 was discussed. This study provided insights into the characteristics of plasma membrane targeting and microdomain localization of Dok5 in living CHO cells. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an atom localization scheme for a four-level alkaline earth atom via a classical standing-wave field, and give the analytical expressions of the localization peak positions as well as the widths versus the parameters of the optical fields. We show that the probability of finding the atom at a particular position can be increased from 1/4 to 1/3 or 1/2 by adjusting the detuning of the probe field and the Rabi frequencies of the optical fields. Furthermore, the localization precision can be dramatically enhanced by increasing the intensity of the standing-wave field or decreasing the detuning of the probe field. The analytical results are quite accordant to the numerical solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of the Lambda-system has been studied theoretically in the context of atom localization. In addition to the probe field and the standing wave driving field, a microwave field is introduced to couple the two lower states, and as a result our Lambda-system forms a closed loop. Therefore phase-sensitive atom localization is expected. Indeed by appropriate choice of the relative phase between three fields, an improvement by a factor of 2 has been found in the detection probability of atoms within the sub-wavelength domain of the standing wave. The effect of other parameters is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scheme of atom localization based on the interference of resonance of double-dark states is proposed, in which the atom interacts with a classical standing-wave field. It is found that the localization property is significantly improved due to the interaction of double-dark resonances. It is realized that the atom is localized just at the nodes of the standing-wave field with higher precision. Moreover, an improvement by a factor of 2 in the detecting probability of a single atom within the subwavelength domain can be achieved by adjusting the probe-field detuning. This scheme shows more advantages than other schemes of atom localization.