18 resultados para Electronic circuits -- Analysis
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the title molecules in neutral, positively, and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, BHLYP, BPW91, and B3PW91. The calculated results are compared with experiments and previous theoretical studies. It was found that the calculated properties are highly dependent on the functionals employed, in particular for the dissociation energy and vibrational frequency. For neutral species, pure density functional methods BLYP and BPW91 have relatively good performance in reproducing the experimental bond distance and vibrational frequency. For cations, hybrid exchange functional methods B3LYP and B3PW91 are good in predicting the dissociation energy. For both neutral and charged species, BHLYP tends to give smaller dissociation energy.
Resumo:
Geometries, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title clusters in both neutral and positively and negatively charged states were studied by use of density functional theory. For both neutral and charged species, different initial isomers were studied in order to determine the structure with the lowest energy. Vibrational analysis was also performed in order to characterize these isomers. For Ta-2, Ta-Ta metallic bond is strengthened by adding or removing an electron, i.e. the charged species are much more stable than the neutral counterpart. For Ta-3, equilateral triangle with D-3h symmetry has the lowest energy for both neutral and charged species (near equilateral triangle for cation). TaO and its charged species have much larger dissociation energy compared with other tantalum oxides. For Ta2O and TaO2. structure with C-2v symmetry is much more stable than linear chains. For Ta3O, planar structure with doubly bridging oxygen atoms of C-2v, symmetry is the global minimum for both neutral and charged species. While for TaO3, three-dimensional structures are favored for both neutral (C-1 symmetry) and charged species (C-3v symmetry).
Resumo:
Heart disease is one of the main factor causing death in the developed countries. Over several decades, variety of electronic and computer technology have been developed to assist clinical practices for cardiac performance monitoring and heart disease diagnosis. Among these methods, Ballistocardiography (BCG) has an interesting feature that no electrodes are needed to be attached to the body during the measurement. Thus, it is provides a potential application to asses the patients heart condition in the home. In this paper, a comparison is made for two neural networks based BCG signal classification models. One system uses a principal component analysis (PCA) method, and the other a discrete wavelet transform, to reduce the input dimensionality. It is indicated that the combined wavelet transform and neural network has a more reliable performance than the combined PCA and neural network system. Moreover, the wavelet transform requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced.