17 resultados para Edisto River Wildlife Management Area--Maps
Resumo:
During the period of the post-glacial transgression maximum (PGTM), there was a huge trumpet estuary in the modern Changjiang River Delta area. The location and the shape of the Paleo-Changjiang River Estuary (PCRE) were much different from those of the present Changjiang River Estuary. The study on the change of characteristics of tidal wave in the Changjiang River mouth area since the PGTM can help to understand better the dynamic development of the Changjiang River Delta. The course curves of tidal level and tidal current velocity during a single tidal cycle for 35 points are calculated, and characteristics of tidal waves in the PCRE and its adjacent area are compared with those of tidal waves in the modern Changjiang River mouth area. The results show that the tidal waves within the PCRE and in its adjacent area during the period of the PGTM belonged to standing wave or a mixture of standing wave and progressive wave. Since then, the tidal wave in the Changjiang River mouth become gradually to be progressive wave with the PCRE being filled and the Changjiang River mouth shifting southeastwards.
Resumo:
Nutrient dynamics and its influence on the distribution of chlorophyll-a in the upwelling area of the Changjiang (Yangtze) River estuary were investigated in the spring (May) and summer (August) of 2004. In the spring, upwelling was apparent in the region of 122 degrees 20'-123 degrees 00' E, 31 degrees 00'-32 degrees 00' N and was associated with low temperature (16-21 degrees C), high salinity (24-33 practical salinity units [psu]), and low dissolved oxygen (2.5-6.0 mg L-1) in the upper 10 m of the water column. The spring upwelling increased the mixed-layer phosphate, nitrate, and silicate concentrations to roughly 1, 15, and 15 mu mol L-1, respectively, and improved the light transparency in the euphotic zone. This improvement in phytoplankton growing conditions was followed by an increase in chlorophyll-a concentrations. The summer upwelling was weaker and occurred over a smaller geographical area (122 degrees 20'-123 degrees 00' E, 31 degrees 15'-31 degrees 50' N). Strongly influenced by turbid Changjiang diluted water (CDW), it had little impact on the upper 10 m of the water column but instead increased nutrient concentrations at greater depths. The high concentration of particulates in the CDW reduced light transmission in the upper 10 m and, hence, limited phytoplankton growth throughout the water column. Chlorophyll-a concentrations in the summer upwelling area were roughly an order of magnitude lower than in the spring. Water clarity, as influenced by the CDW, appears to be the principal factor limiting the impact of upwelling on phytoplankton biomass in this area.