19 resultados para East Central African Expedition (1878-1880)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolarian abundance and species composition have been determined in 72 surface: sediment samples from the northeastern East China Sea. The results are compared with chemical and physical properties of the overlying water masses, and with sediment conditions. In the study area, radiolarian abundance and species number increase markedly from northwest to southeast, and their distributions can be divided into three provinces: the low-density zone corresponding to the shelf, the middle-density zone corresponding to the western slope of the Okinawa Trough and the high-density zone corresponding to the central part of the Okinawa Trough. The distribution of radiolarians correlates well with modem sea surface temperature and sea surface salinity, but shows a negative relation with nutrients and primary productivity of the overlying water. This distribution pattern is also strongly affected by the sediment type and terrigenous material input. Also, the Kuroshio Current has an important effect on controlling the distribution and species composition of radiolarian fauna in this area. Based on three Q-mode factors (accounting for 90.2% of the variance), three radiolarian assemblages have been distinguished, and their distributions are clearly correlated with oceanographic current patterns in the region. The mixed water assemblage dominated by Tetrapyle circularis, Tetrapyle quadriloba and Ommatartus tetrathalamus tetrathalamus is restricted to the area of the Mixed Water, but mainly influenced by the Shelf Water. The Kuroshio Water assemblage, which is dominated by Lithelius minor, Dictyocoryne profunda, Stylodictya multispina, Acrosphaera spinosa, Dictyocoryne truncatum, Spongaster tetrars, Stylodictya arachnia and Ommatartus tetrathalamus tetrathalamus, is basically controlled by the Kuroshio Surface Water. And the transition assemblage dominated by Tetrapyle quadriloba and Monozonium pachystylum is associated with the Tsushima Warm Current Water. The boundaries among these assemblages approximately coincide with the oceanographic front. And the changes in the distribution of these assemblages could be,regarded as-not only modifications of the water masses, but also indicators of the possible movements of the oceanic front. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite and in situ observations in the equatorial Atlantic Ocean during 2002-03 show dominant spectral peaks at 40-60 days and secondary peaks at 10-40 days in sea level and thermocline within the intraseasonal period band (10-80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000-03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used. Within 3 degrees S-3 degrees N of the equatorial region, the strong 40-60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40-50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002-03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000-06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/ lag correlation ranging from-0.62 to 0.74 above 95% significance. Away from the equator (3 degrees-5 degrees N), however, sea level and thermocline variations in the 40-60-day band are caused largely by tropical instability waves (TIWs). On 10-40-day time scales and west of 10 degrees W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5 degrees S-5 degrees N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10 W, SSHA and thermocline variations at 10 40- day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2 degrees S-2 degrees N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1 degrees-5 degrees N and 1 degrees-5 degrees S regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calanus sinicus aggregate at the depth of 40-60 m (ambient temperature is 16 degreesC) in the waters of the continental shelf of the Yellow Sea during summer. in animals found in near shore regions, there are changes in digestive gut cells structure, digestive enzyme activity (protease, amylase), and tissue enzyme (alkaline phosphatase (ALP)), which may represent adaptations by this cold-water animal to a sharp seasonal increase in temperature of 6-23 degreesC. The activities of the digestive enzymes (protease and amylase) are very low in animals at stations near the estuary of Yangtse River, whereas they are relatively high in animals at stations in the central Yellow Sea, During summer, B-cells of the intestine and the villi intestinalis disappear in animals that do not feed at stations near the estuary of the Yangtse River. Respiration rates were undetectable or quite low during summer in C. sinicus from stations near the estuary of the Yangtse River, whereas they were relatively high at stations in the central Yellow Sea. Based upon the morphological characteristics of the digestive gut structure, enzyme levels, respiration rates, and the distribution of C. sinicus, we concluded that C. sinicus might be dormant during summer in the near shore areas of the East China Sea while remaining active in the central Yellow Sea. (C) 2002 Elsevier Science B.V. All rights reserved.