45 resultados para ESEO spacecraft simulator thermal power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform (FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicating the good thermal stability of InnoSlab laser. Such a new kind of laser can be designed and optimized on the base of this simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phase-locking fibre laser array with up to 60 W of coherent output power based on two large-core fibre is reported. The slope efficiency of the in-phase mode is 37%. For two cases of spacings between the cores, steady high-contrast interference stripes are observed. When the whole system operates under a high pump power level, no thermal effects for the spatial filter have been observed, which means that we can increase the coherent output power further by increasing the individual fibre laser power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a highly efficient diode side-pumped Nd:YAG ceramic laser with a diffusive reflector as an optical pump cavity. A maximum output power of 211.6W was obtained with an optical -to- optical conversion efficiency of 48.7%. This corresponds to the highest conversion efficiency in the side-pumped ceramic rod. Thermal effects of the Nd:YAG ceramic rod were analyzed in detail through the measurements of laser output powers and beam profiles near the critically unstable region. A M-2 beam quality factor of 18.7 was obtained at the maximum laser output power. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk-lasses have been prepared in the TeO2-ZnO-ZnCl2 systems. Their characteristic temperatures were determined and analyzed. Raman and FT-IR spectra were used to analyze the effect of ZnCl2 on the structure and spectral properties of tellurite glasses and OH- groups in this glass system. The spectroscopic properties including absorption spectra, emission cross-sections and fluorescence lifetimes of Yb3+ in TeO2-ZnO-ZnCl2 were measured and calculated. It is demonstrated that the progressive replacement less than 20 mol% of TeO2 by ZnCl2 improves the thermal stability, removes the OH- groups, turns TeO4 bipyramidal arrangement into TeO3 (and/or TeO3+1) trigonal pyramids structures and results in the decrease of the symmetry of the structure, which increases the emission cross-sections and lifetimes. But when the content of ZnCl2 up to 30 mol%, the glass system becomes more hygroscopic and introduces more OH- groups, which decrease the emission cross-sections and shorten the lifetimes. The results show that the glass system with (TeO2)-Te-69-(ZnO)-Zn-10-20ZnCl(2)-1Yb(2)O(3) is a desirable component for active laser media for high power generation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new model for analyzing the laser-induced damage process is provided. In many damage pits, the melted residue can been found. This is evidence of the phase change of materials. Therefore the phase change of materials is incorporated into the mechanical damage mechanism of films. Three sequential stages are discussed: no phase change, liquid phase change, and gas phase change. To study the damage mechanism and process, two kinds of stress have been considered: thermal stress and deformation stress. The former is caused by the temperature gradient and the latter is caused by high-pressure drive deformation. The theory described can determine the size of the damage pit. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system consisting of a distributed Bragg reflector laser is proposed. The time-resolved spectrum technique is used to measure the peak power of the beat signal and the intrinsic linewidth of heat signal for calibration. The experimental results show that the impact of the thermal-induced frequency drift, which is the main reason for producing an error in measurement by conventional peak power method and spectrum power method, can be removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 mm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 mu m. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a mini-staged multi-stacked quantum cascade laser structure with a designed wavelength of 4.7 mu m is presented. By introducing five 0.5 mu m thick high thermal conductivity InP interbuffer layers, the 60-stages active region core of the quantum cascade laser is divided into six equal parts. Based on simulation, this kind of quantum cascade laser with a 10 mu m ridge width gives nearly circular two-dimensional far-field distribution (FWHM = 32.8 degrees x 29 degrees) and good beam quality parameters M-2 = 1.32 x 1.31 in the fast axis (growth direction) and the slow axis (lateral direction). Due to the enhancement of lateral heat extraction through the interbuffer layers, compared to the conventional structure, a decrease of about 5-6% for the maximum temperature in the active region core of the mini-staged multi-stacked quantum cascade laser with indium-surrounded and gold-electroplated packaging profiles is obtained at all possible dissipated electrical power levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of silicon-on-insulator thermo-optic variable optical attenuators (VOAs) based on a Mach-Zehnder interferometer and a multimode-interference coupler are fabricated, one with thermal isolating grooves to improve heating efficiency and the other without Comparison of optical and electrical properties, such as insertion losses, the maximum attenuation levels and the corresponding power consumptions, and the response times, is carried out between the two types of VOAs. The comparison results Indicate that use of thermal isolating grooves leads to better values for most characteristics and is an effective way to improve the performance of Mach-Zehnder interferometer-type thermo-optic devices. (c) 2005 Society of Photo-Optical Instrumentation Engineers.