61 resultados para ELASTICITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously published refined shear deformation theory is used to analyse free vibration of laminated shells. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first-order shear deformation theory, hut the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of symmetric cross-ply laminated cylindrical shells, symmetric and antisymmetric cross-ply cylindrical panels is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of an infinite plate with crack of length 2a loaded by the remote tensile stress P and a pair of concentrated forces Q is discussed. The value of the force Q for the initial contact of crack face is investigated and the contact length elevated, while the Q force increases. The problem is solved assuming that the stress intensity factor vanishes at the end point of the contact portion. By the Fredholm integral equation for the multiple cracks, the reduction of stress intensity factor due to Q is found. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method is presented for calculating the values of K-I and K-II in the elasticity solution at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual crack extension method. Expressions for calculating K-I and K-II by using the displacements and the stiffness derivative of the finite element solution and asymptotic crack tip displacements are derived. The method is shown to produce very accurate solutions even with coarse element mesh.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously published discrete-layer shear deformation theory is used to analyze free vibration of laminated plates. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first order shear deformation theory, but the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of simply supported symmetric and antisymmetric cross-ply plates is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present an exact higher-order asymptotic analysis on the near-crack-tip fields in elastic-plastic materials under plane strain, Mode I. A four- or five-term asymptotic series of the solutions is derived. It is found that when 1.6 < n less-than-or-equal-to 2.8 (here, n is the hardening exponent), the elastic effect enters the third-order stress field; but when 2.8< n less-than-or-equal-to 3.7 this effect turns to enter the fourth-order field, with the fifth-order field independent. Moreover, if n>3.7, the elasticity only affects the fields whose order is higher than 4. In this case, the fourth-order field remains independent. Our investigation also shows that as long as n is larger than 1.6, the third-order field is always not independent, whose amplitude coefficient K3 depends either on K1 or on both K1 and K2 (K1 and K2 arc the amplitude coefficients of the first- and second-order fields, respectively). Firmly, good agreement is found between our results and O'Dowd and Shih's numerical ones[8] by comparison.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a constitutive model of elasticity coupled with damage suggested by Lemaitre et al, [1] is used. The macroscopic stress-strain response of the model includes two stages: strain hardening and strain softening. The basic equation is derived for the anti-plane shear problem. Several lowest order asymptotic solutions are obtained, and assembled for the crack-tip fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode 1. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For most practically important plane elasticity problems of orthotropic materials, stresses depend on elastic constants through two nondimensional combinations. A spatial rescaling has been found to reduce the orthotropic problems to equivalent problems in materials with cubic symmetry. The latter, under favorable conditions, may be approximated by isotropic materials. Consequently, solutions for orthotropic materials can be constructed approximately from isotropic material solutions or rigorously from cubic ones. The concept is developed to gain insight into the interplay between anisotropy and finite geometry. The inherent simplicity of the solutions allows a variety of technical problems to be addressed efficiently. Included are stress concentration related cracking, effective contraction of orthotropic material specimens, crack deflection onto easy fracture planes, and surface flaw induced delamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The local-global anatysis method is systematically extended to the fracture analysis of spherical shells. On the basis of the shallow shell theory, which takes into account transverse shear deformations, governing equations for cracked spherical shells expressed in displacement and stress functions f, F and φ are proposed, and then a general solution including Modes, Ⅰ, Ⅱ, Ⅲ for stress-strain fields at crack tip in a spherical shell is obtained, which plays the same role as Williams's expansion in plane elasticity. The numerical results for finite-size spherical shells under different boundary conditions have been obtained. Furthermore, the bulging factors are analyzed with regard to shearing stiffness and an approximate formula is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本书收录关于力学领域的论文301篇。内容包括:回顾20世纪力学在中国的发展,描绘了2000年中国和世界在力学各主要领域的发展现状;展望力学在21世纪的发展方向,探论新世纪中可能面临的新的重大力学等问题。

前言 白以龙;杨卫;  
力学学科《学科发展与优先领域战略研究报告》   
世纪之交对力学的回顾、展望和想象 白以龙;  
计算流体力学中发展物理分析的几个问题 张涵信;李沁;宗文刚;张来平;  
非对称Riccati方程基于本征解的分析解 钟万勰;  
实验固体力学近几年的概况 伍小平;  
HIGHER-ORDER COHESIVE ELASTICITY THEORIES OF FRACTURE Anna Vainchtein;  
疲劳短裂纹群体损伤随机特征研究 洪友士;郑亮;乔宇;  
半浮区热毛细对流及其不稳定性机理 胡文瑞;唐泽眉;  
ZONAL AND CORRELATION ANALYSIS IN SWEPT SHOCK/BOUNDARY LAYER INTERACTIONS 邓学蓥;  
经典约束系统动力学的研究进展 梅凤翔;  
复杂系统的非线性动力学问题 陆启韶;  
时滞受控系统动力学研究进展 胡海岩;王在华;  
力学与航天器工程 马兴瑞;苟兴宇;周志成;  
采矿工程中的力学问题与分析 谢和平;  
CHALLENGING PROBLEMS IN FAILURE ANALYSIS OF DUAL-PHASE MATERIALS: CYCLIC MICRO-PLASTICITY AND SMALL FATIGUE CRACK TIP BEHAVIOR   
力学与国防科技 周丰峻;  
流体力学和气动热弹性力学新一代反命题的研究 刘高联;  
含灰气体近壁区流动及传热增强机制分析 王柏懿;戚隆溪;王超;江先金;  
三维定常、二维非定常分离模式及准则研究 吕志咏;