93 resultados para Dynamic Transperineal Ultrasound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A slope failure is developed due to progressive external loads and deteriorations of slope geomaterials, thus forming a progressive and dynamic development and occurrence of landslides. Site geological properties and other active factors such as hydrodynamic load and human activities are complex and usually unknown, thus this dynamic development and occurrence of landslides can only be understood through the progressive accumulation of knowledge on the landslides. For such a progressive process, this paper proposes a dynamic comprehensive control method for landslide control. This control method takes full advantage of updated monitoring data and site investigations of landslides, and emphasizes the implementation of possible measures for landslide control at reasonable stages and in different groups. These measures are to prevent the occurrence of a landslide disaster. As a case study, a landslide project at the Panluo open-pit iron mine is analyzed to illustrate this dynamic comprehensive control method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the dynamic shear strength of a unidirectional C/A356.0 composite and A356.0 alloy, respectively, are measured with a split Hopkinson torsional bar (SHTB) technique. The results indicate that the carbon fibers make very little contribution to the enhancement of the shear strength of the matrix material. The microscopic inspections on the fracture surface of the composite show a multi-scale zigzag feature. This implies that there is a complicated shear failure mechanism in the unidirectional carbon/aluminum composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed response number, is applied to the dynamic plastic response of plates subjected to dynamic loading. Many theoretical and experimental results presented by different researchers are reformulated into new concise forms with the response number. The advantage of the new forms is twofold: (1) they are more physically meaningful, and (2) they are independent of the choice of units, thus, they have wider range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental investigation of the response of suction bucket foundation in fine sand layer under horizontal dynamic loading has been carried out. The developments of settlement and excess pore pressure of sand foundation have been mainly studied. It is shown that the sand surrounding the bucket softens or even liquefies at the first stage if the loading amplitude is over a critical value, at later stage, the bucket settles and the sand layer consolidates gradually. With the solidification of the liquefied sand layer and the settlement of the bucket, the movement of the sand layer and the bucket reach a stable state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic micro-deformation of the specimen under laser point source is measured using a laser beam reflex amplifier system and numerically simulated by Msc.Marc software. Compared with experimental result and calculated result, the final deformation direction of the specimen depends on the result of the thermal strain and the phase transformation strain cooperation, away from the laser beam or towards the laser beam, the final deformation angle depends on temperature gradient in the thickness direction and the geometry constraint of the specimen. The conclusion lays the foundation for further research on the mechanism of laser bending. At the same time, it is proposed that the model of calculation based on classical Fourier heat transfer theory cannot be enough to simulate the dynamic micro-deformation of the specimen under laser point source, the model of calculation should be modified in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that noise and detection error can affect the performances of an adaptive optics (AO) system. Effects of noise and detection error on the phase compensation effectiveness in a dynamic AO system are investigated by means of a pure numerical simulation in this paper. A theoretical model for numerically simulating effects of noise and detection error in a static AO system and a corresponding computer program were presented in a previous article. A numerical simulation of effects of noise and detection error is combined with our previous numeral simulation of a dynamic AO system in this paper and a corresponding computer program has been compiled. Effects of detection error, readout noise and photon noise are included and investigated by a numerical simulation for finding the preferred working conditions and the best performances in a practical dynamic AO system. An approximate model is presented as well. Under many practical conditions such approximate model is a good alternative to the more accurate one. A simple algorithm which can be used for reducing the effect of noise is presented as well. When signal to noise ratio is very low, such method can be used to improve the performances of a dynamic AO system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrical specimens (4 mm diameter and 4 mm height) of titanium alloy bar were given various heat treatments to provide a wide range of microstructures and mechanical parameters. These specimens were then subjected to high plastic strain at a large strain rate (103 s-1 ) during dynamic compression by a split Hopkinson bar at ambient temperature. The microstructures of the localised shear bands were examined by optical and transmission electron microscopy. The results show that there are two types of localised shear bands: deformed and white shear bands. A detailed observation reveals that there is no difference in the nature of the deformed and white shear bands, but they occur at different stages of localised deformation. It is found that there is a burst of strain, corresponding to a critical strain rate at which the white shear band occurs and no phase transformation occurs in the shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H (2)/O (2) diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution in localized shear deformation was investigated in an 8090 Al-Li alloy by split Hopkinson pressure bar (strain rate of approximately 10(3) s(-1)) at ambient temperature and 77 K. The alloy was tested in the peak-, over-, under-, and natural-aged conditions, that provide a wide range of microstructural parameters and mechanical properties. Two types of localized shear bands were distinguished by optical microscopy: the deformed shear band and the white-etching shear band. They form at different stages of deformation during localization. There are critical strains for the occurrence of deformed and white-etching localized shear deformation, at the imposed strain rate. Observations by transmission electron microscopy reveal that the white-etching bands contain fine equiaxed grains; it is proposed that they are the result of recrystallization occurring during localization. The deformed-type bands are observed after testing at 77 K in all heat treatment conditions, but they are not as well defined as those developed at ambient temperature. Cracking often occurs along the localized shear at ambient temperature. The decrement in temperature is favorable for the nucleation, growth and coalescence of the microcracks along the shear bands, inducing fracture.