115 resultados para Direct product of Galois rings
Resumo:
Very low doses (0.00001 mg/kg) of the alpha-2 adrenergic antagonist, yohimbine, improved working memory performance in a subset of aged monkeys. Improvement appeared to result from increased norepinephrine (NE) release onto postsynaptic alpha-2 adrenoceptors, as the response was blocked by the ''postsynaptic'' alpha-2 antagonist, SKF104078. Cognitive-enhancing effects of low dose yohimbine treatment may depend on aged animals retaining an intact, endogenous NE system. In contrast to yohimbine, the alpha-2 agonist, clonidine, has improved working memory in air aged animals examined. In the present study, clonidine's beneficial effects were also blocked by the postsynaptic antagonists SKF104078 and SKF104856, suggesting that clonidine acts by directly stimulating postsynaptic alpha-2 adrenoceptors. Beneficial doses of clonidine (0.01 mg/kg) and yohimbine (0.00001 mg/kg) were combined to see if they would produce additive effects on memory enhancement. This strategy was successful in young monkeys with intact NE systems but was not effective in the aged monkeys. These findings demonstrate that drugs that indirectly stimulate postsynaptic alpha-2 receptors by increasing NE release are not as reliable in aged monkeys as directly acting agonists that can replace NE at postsynaptic alpha-2 receptors.
Resumo:
Although infanticide has been witnessed in many species of Colobinae, and a case was observed in a captive group of golden snub-nosed monkeys (Rhinopithecus roxellana), observed cases of infanticide in wild snubnosed monkeys (Rhinopithecus spp.) have not
Resumo:
By the use of partial least squares (PLS) method and 27 quantum chemical descriptors computed by PM3 Hamiltonian, a statistically significant QSPR were obtained for direct photolysis quantum yields (Y) of selected Polychlorinated dibenzo-p-dioxins (PCDDs). The QSPR can be used for prediction. The direct photolysis quantum yields of the PCDDs are dependent on the number of chlorine atoms bonded with the parent structures, the character of the carbon-oxygen bonds, and molecular polarity. Increasing bulkness and polarity of PCDDs lead to decrease of log Y values. Increasing the frontier molecular orbital energies (E-lumo and E-homo) and heat of formation (HOF) values leads to increase of log Y values. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We report a direct observation of excitonic polaron in InAs/GaAs quantum dots using the photoluminescence (PL) spectroscopy. We observe that a new peak s' emerges below the s-shell which has anomalous temperature dependence emission energy. The peak s' anticrosses with s at a certain temperature, with a large anticrossing gap up to 31 meV. The behavior of the new peak, which cannot be interpreted using Huang-Rhys model, provides a direct evidence for strong coupling between exciton and LO phonons, and the formation of the excitonic polaron. The strong coupling between exciton and phonons opens a way to coherently control the polaron states.
Resumo:
We propose a simple method to detect the relative strength of Rashba and Dresselhaus spin-orbit interactions in quantum wells (QWs) without relying on the directional-dependent physical quantities. This method utilizes the two different critical gate voltages that leading to the remarkable signals of SU(2) symmetry, which happens to reflect the intrinsic-structure-inversion asymmetry of the QW. We support our proposal by the numerical calculation of in-plane relaxation times based on the self-consistent eight-band Kane model. We find that the two different critical gate voltages leading to the maximum spin-relaxation times [one effect of the SU(2) symmetry] can simply determine the ratio of the coefficients of Rashba and Dresselhaus terms. Our proposal can also be generalized to extract the relative strengths of the spin-orbit interactions in quantum-wire and quantum-dot structures.
Resumo:
A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.
Resumo:
The electronic structure of quantum rings is studied in the framework of the effective-mass theory and the two dimensional hard wall approximation. In cases of both the absence and presence of a magnetic field the electron momenta of confined states and the Coulomb energies of two electrons are given as functions of the angular momentum, inner radius, and magnetic-field strength. By comparing with experiments it is found that the width of the real confinement potential is 14 nm, much smaller than the phenomenal width. The Coulomb energy of two electrons is calculated as 11.1 meV. The quantum waveguide transport properties of Aharonov-Bohm (AB) rings are studied complementarily, and it is found that the correspondence of the positions of resonant peaks in AB rings and the momentum of confined states in closed rings is good for thin rings, representing a type of resonant tunneling.
Resumo:
IEEE Computer Society
Resumo:
We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m- 3 h- 1 and 203.80 kg m- 3 h- 1 when gas hourly space velocities were 650 h- 1 and 1200 h- 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.