79 resultados para Direct method
Resumo:
A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are solved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re less than or equal to 5000, the results agree well with those in literature. When Re = 7500 and Re = 10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.
Resumo:
The conventional direct simulation Monte Carlo (DSMC) method has a strong restriction on the cell size because simulated particles are selected randomly within the cell for collisions. Cells with size larger than the molecular mean free path are generally not allowed in correct DSMC simulations. However, the cell-size induced numerical error can be controlled if the gradients of flow properties are properly involved during collisions. In this study, a large cell DSMC scheme is proposed to relax the cell size restriction. The scheme is applied to simulate several test problems and promising results are obtained even when the cell size is greater than 10 mean free paths of gas molecules. However, it is still necessary, of course, that the cell size be small with respect to the flow field structures that must be resolved.
Resumo:
The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.
Resumo:
Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.
Resumo:
In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.
Resumo:
An improved method of PCR in which the small segment of conchocelis is amplified directly without DNA extraction was used to amplify a RUBISCO intergenic spacer DNA fragment from nine species of red algal genus Porphyra (Bangiales, Rhodophyta), including Porphyra yezoensis (Jiangsu, China), P. haitanensis (Fujian, China), P. oligospermatangia (Qingdao, China), P. katadai (Qingdao, China), P. tenera (Qingdao, China), P. suborboculata (Fujian, China), P. pseudolinearis (Kogendo, Korea), P. linearis (Devon, England), and P. fallax (Seattle, USA). Standard PCR and the method developed here were both conducted using primers specific for the RUBISCO spacer region, after which the two PCR products were sequenced. The sequencing data of the amplicons obtained using both methods were identical, suggesting that the improved PCR method was functional. These findings indicate that the method developed here may be useful for the rapid identification of species of Porphyra in a germplasm bank. In addition, a phylogenetic tree was constructed using the RUBISCO spacer and partial rbcS sequence, and the results were in concordant with possible alternative phylogenies based on traditional morphological taxonomic characteristics, indicating that the RUBISCO spacer is a useful region for phylogenetic studies.
Resumo:
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.
Resumo:
Objective speckle from a stick-on foil is a new approach to applying the objective white light speckle method to in-plane displacement measurements. By a relatively easy technique a thin aluminum foil is mounted onto the specimen surface and a random grating is scratched onto it, yielding high reflectance and fine optical details. After double exposure by a direct recording system without using a lens, the resulting holographic film possesses a broad spatial spectrum and displacement information. Full-field contour maps of equal displacement can be obtained that are of good contrast and high sensitivity and that have a large adjustable measurement range. The method can be applied to practical engineering problems for both plane and developable curved surfaces.
Resumo:
In this paper, applying the direct variational approach of first-order approximation to the capillary instability problem for the eases of rotating liquid column, toroid and films on both sides of cylinder, we have obtained the necessary and sufficient conditions for motion stability of the "cylindrical coreliquid-liquid-cylindrical shell" systems. The results obtained before are found to be special cases of the present investigation. At the same time, we have explained physical essence of rotating instability and settled a few disputes in previous investigations.