33 resultados para Differential equations, Nonlinear


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A previously published discrete-layer shear deformation theory is used to analyze free vibration of laminated plates. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first order shear deformation theory, but the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of simply supported symmetric and antisymmetric cross-ply plates is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A perturbation solution is obtained for the local stress-strain fields in an axially cracked cylindrical shell. The tenth-order differential equations are used that take into account the transverse shear deformation. The perturbation of a curvature parameter, λ, is employed, where . The stress intensity factors for finite size cylindrical shells subjected to bending and internal pressure are evaluated. Sufficient accuracy can be obtained without using fine mesh sizes in regions near the crack tip. Also analyzed are the influence of cylinder diameter and shearing stiffness on bulging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213–218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/L 1 (L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 – 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

设计了一种新型的体全息光栅透镜,在一块光学平板(体全息记录材料)内可以将输入光束产生横向传输并聚焦,或对输入光点产生横传的准直.它由一束平面波和一束球面波正交入射到光学平板上干涉形成的.研究了该体全息透镜的光栅间距变化情况,为设计和制备体全息光栅透镜及相关器件提供了理论依据.基于两光束耦合波理论,得到了该光栅透镜的耦合波方程,近似计算了该透镜的衍射效率及其达到高衍射效率时透镜的最佳尺寸.最后,讨论了该透镜在集成光学等领域中的应用.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SAFER++是进入NESSIE第2轮评估的7个分组算法之一。采用差分密码分析和非线性密码分析相结合的方法对4轮、5轮和6轮SAFER++进行分析,结果表明:6轮SAFER++对这种攻击方法不免疫;攻击4轮和5轮SAFER++时,与已有结果相比,攻击复杂度大大减小。攻击对2\+{250}个256比特长度的密钥有效。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of novel numerical methods for the exponential models of growth are proposed. Based on these methods, hybrid predictor-corrector methods are constructed. The hybrid numerical methods can increase the accuracy and the computing speed obviously, as well as enlarge the stability domain greatly. (c) 2005 Published by Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transfer matrix method is presented for the study of electron conduction in a quantum waveguide with soft wall lateral confinement. By transforming the two-dimensional Schrodinger equation into a set of second order ordinary differential equations, the total transfer matrix is obtained and the scattering probability amplitudes are calculated. The proposed method is applied to the evaluation of the electron transmission in two types of cavity structure with finite-height square-well confinement. The results obtained by our method, which are found to be in excellent agreement with those from another transfer matrix method, suggest that the infinite square-well potential is a good approximation to finite-height square-well confinement for electrons propagating in the ground transverse mode, but softening of the walls has an obvious effect on the electron transmission and mode-mixing for propagating in the excited transverse mode. (C) 1996 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.