189 resultados para Delta(9)-tetrahydrocannabinol
Resumo:
The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15A degrees C and 3.9-fold at 4A degrees C compared to the alga at 25A degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.
Resumo:
During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velocity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness delta(eff), the concentration at the interface Q and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results, also showed that the order of magnitude of shear force was about 10(-21) N, which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.
Resumo:
概述了第9届国际等离子体化学会议的论文和活动情况,对这个领域的发展提出了一些看法。
Resumo:
利用OM及FEM研究了铁基合金Nd:YAG脉冲激光熔凝区的几何形态及其变化规律、以及熔凝的热物理过程;利用OM、SEM、TEM、X-射线衍射仪及磨损实验机,研究了两种铁基热模具材料脉冲激光熔凝组织及其时效组织结构,以及熔凝区规则离散分布规律对材料抗磨损性能的影响。在10~5~10~7W/cm~2的脉冲激光平均功率密度范围内,可得到热传导型和深熔型两类强化区,当临界平均功率密度大于5 * 10~5W/cm~2,同时临界激光作用时间大于2ms时,热传导型强休区向深熔型强休区转变。熔化过程中,在熔池中形成上部以对流传热为主,底部以导热为主的传热模式,流场、温度场和压力场均随脉冲激光作用时间变化,最大流速、压力和温度梯度分别可达100m/s、数个大气压和10~(8-9) ℃C/m量级。凝固过程中,固液界面上的最大温度梯度、凝固速率和冷却速度时间和空间位置变化,分别可达10~(8-9) ℃/m量级、10~(-1)m/s量级和10~(7-8) ℃/s量级,其中冷却速度得到实验验证。亚共晶合金铸铁脉冲激光熔凝组织为δ-铁素体与M_3C的层片状共晶组织,还含有部分γ-奥氏体和少量的高碳孪晶马氏体组织,δ-铁素体和γ-奥氏体中均存在高密度位错亚结构。5CrMnMo钢脉冲激光熔凝组织由板条马氏体及少量的孪晶马氏体构成,马氏体中也存在高密度位错亚结构。上述两种组织经高温时效后,仍保持较细的晶粒,并有大量细小均匀弥散分布的碳化物析出,其中铸铁熔凝组织析出M_(23)C_6碳化物,M_(23)C_6可在M_3C/γ-奥氏体相界面或M_3C内部原位形核,亦可在δ-铁素体中弥散析出。两种材料的熔凝组织及其时效组织的显微硬度均明显高于相应的原始组织,也高于激光连续扫描熔凝的结果。脉冲激光规则离散熔凝加工在材料表面形成软硬相间的“原位”功能层,能显著降低裂纹形成的敏感性,提高材料表层的抗磨粒磨损性能,时效后仍具有较好的抗磨损性能。以熔凝强化区直径作为中心间距进行规则离散熔凝处理可使材料表面获得最佳抗磨损性能。
Resumo:
The effects of complex boundary conditions on flows are represented by a volume force in the immersed boundary methods. The problem with this representation is that the volume force exhibits non-physical oscillations in moving boundary simulations. A smoothing technique for discrete delta functions has been developed in this paper to suppress the non-physical oscillations in the volume forces. We have found that the non-physical oscillations are mainly due to the fact that the derivatives of the regular discrete delta functions do not satisfy certain moment conditions. It has been shown that the smoothed discrete delta functions constructed in this paper have one-order higher derivative than the regular ones. Moreover, not only the smoothed discrete delta functions satisfy the first two discrete moment conditions, but also their derivatives satisfy one-order higher moment condition than the regular ones. The smoothed discrete delta functions are tested by three test cases: a one-dimensional heat equation with a moving singular force, a two-dimensional flow past an oscillating cylinder, and the vortex-induced vibration of a cylinder. The numerical examples in these cases demonstrate that the smoothed discrete delta functions can effectively suppress the non-physical oscillations in the volume forces and improve the accuracy of the immersed boundary method with direct forcing in moving boundary simulations.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.
Resumo:
Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.